Objects

Functionality

Libraries

Availability

Examples

Contributors

Symbolic Numerical Polynomial Solving


Solving polynomial systems using Gröbner bases and triangular sets:
Input: Zero-dimensional system f1,..., fk in K[x1,..., xn ]
Output: Complex roots of f1 = ... = fk = 0
The algorithm proceeds in 3 steps:
Step 1: Compute a reduced lexicographical Gröbner basis of the ideal I.
Step 2: Compute a triangular system T1,..., Ts . ( V(I) is the union of the V(Ti ). )
Step 3: Use a numerical solver (e.g. Laguerre's method) to find all zeros of Ti , i=1,..., s .
LIB "triang.lib";
ring r=0,(x,y,z),lp;
ideal i=x2+y+z-1,x+y2+z-1,x+y+z2-1;
option(redSB);
ideal j = groebner(i);
triangMH(j,2);
==> [1]: [2]: [3]: [4]:
_[1]=z _[1]=z _[1]=z2+2z-1 _[1]=z-1
_[2]=y _[2]=y-1 _[2]=y-z _[2]=y
_[3]=x-1 _[3]=x _[3]=x-z _[3]=x
LIB"solve.lib";
triang_solve(triangMH(j,2),30); // accuracy of 30 digits
rlist; Returns a list of 5 solutions.

Valladolid (Spain) 5-00 http://www.singular.uni-kl.de