LIB "deform.lib";
ring r=0,(x,y,z,u,v),ds;
matrix m[2][4]=x,y,z,u,y,z,u,v;
ideal f0=minor(m,2);
versal(f0);
==> // Result belongs to ring Px.
==> // Equations of total space of miniversal deformation are
==> // given by Fs, equations of miniversal base space by Js.
==> // Make Px the basering and list objects defined in Px by typing:
==> setring Px; show(Px);
setring Px;
Js;
==> Js[1,1]=BD
==> Js[1,2]=AD-D2
==> Js[1,3]=-CD