Gröbner Bases
Syzygies
Resolutions
Quantum Alg.
Left Maximality
Max. Twosided
Finding a Maximal Two-Sided Ideal in a Given Left Ideal - Results

After the first iteration, we obtain the ideal
==> B[1]=eh-ea+2e
B[2]=2ef+ha-a2-2h
B[3]=e2
B[4]=h2a-2ha2+a3+2ha-2a2

Since a is a parameter, B[4] is replaced by B[4]=h2-2ha+a2+2h-2a. Continuing iterations with A=B, we obtain
==> B[1]=4ef+h2-a2-2h-2a
B[2]=h3-3h2a+3ha2-a3+6h2-12ha+6a2+8h-8a
B[3]=eh2-2eha+ea2+6eh-6ea+8e
B[4]=e2h-e2a+4e2
B[5]=e3
The first candidate is B[1]=4ef+h2-a2-2h-2a, since it has lower degree than the other elements. We can prove our hypothesis by performing some more iterations :
==> B[1]=4ef+h2-a2-2h-2a
B[2]=h4-4h3a+6h2a2-4ha3+a4+12h3-36h2a+36ha2-12a3+44h2-88ha+44a2+48h-48a
B[3]=eh3-3eh2a+3eha2-ea3+12eh2-24eha+12ea2+44eh-44ea+48e
B[4]=e2h2-2e2ha+e2a2+10e2h-10e2a+24e2
B[5]=e3h-e3a+6e3
B[6]=e4
We see that we were right - the answer is the ideal generated by 4ef+h2-2h-a2-2a.

Moreover, the answer is nothing else but the central element 4ef+h2-2h of U(sl2) minus
the central character a2+2a of the ideal <e, h-a> .

Back to the parent.

KL, 06/03 http://www.singular.uni-kl.de