
Singular - Tutorial

Stefan Steidel
Department of Mathematics
University of Kaiserslautern

67653 Kaiserslautern
steidel@mathematik.uni-kl.de

Singular version 3-0-4
University of Kaiserslautern

Department of Mathematics and Centre for Computer Algebra
Authors: G.–M. Greuel, G. Pfister, H. Schönemann

Copyright c©1986-2007

October 20, 2008

Contents

1 Preface 3
1.1 Overview of Singular . 4
1.2 Availability . 4
1.3 History of Singular . 4
1.4 Acknowledgement . 5

2 Getting started 7
2.1 First steps . 7

2.1.1 Notations and basic concepts 7
2.1.2 Starting and terminating Singular 8
2.1.3 The online help help . 9
2.1.4 Interrupt Singular . 10
2.1.5 Editting inputs . 10
2.1.6 Types of data in Singular and rings 11
2.1.7 Procedures . 13
2.1.8 Libraries . 16
2.1.9 Output in files / input in files 18

2.2 Ringindependent objects . 19
2.3 Rings and standard bases . 22

3 Examples 27
3.1 Computation in fields . 27
3.2 Computation in polynomial rings 29
3.3 Methods for creating ring maps 31
3.4 Properties of ring maps . 32
3.5 Monomial orderings . 34
3.6 Leading data . 35
3.7 Normal form . 35
3.8 Ideal membership . 36
3.9 Linear combination of ideal members 36
3.10 Elimination of variables . 37
3.11 Computing with radicals . 37
3.12 Intersection of ideals . 38
3.13 Quotient of ideals . 38
3.14 Matrix operations . 39
3.15 Langrange multipliers . 41

3.15.1 Theoretical introduction 41
3.15.2 Application to Singular 42
3.15.3 Singular-Exercise . 46
3.15.4 Solution . 46

2

1 Preface

Singular version 3-0-4
University of Kaiserslautern

Department of Mathematics and Centre for Computer Algebra
Authors: G.–M. Greuel, G. Pfister, H. Schönemann

Copyright c©1986-2007

NOTICE

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation (version 2 or version 3 of the License).

The following software used with Singular have their own copyright: the
omalloc library, the readline library, the Gnu Multiple Precision Library
(GMP), NTL: A Library for doing Number Theory (NTL), the Multi Protocol
library (MP), the Singular-Factory library, the Singular-libfac library, and, for
the Windows distributions the Cygwin DLL and the Cygwin tools (Cygwin),
and the XEmacs editor (XEmacs).

Their copyrights and licenses can be found in the accompanying files which are
distributed along with these packages. (Since version 3-0-3 of Singular, all
parts have GPL or LGPL as (one of) their licences.)

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA (see GPL)

Please send any comments or bug reports to singular@mathematik.uni-kl.de.

If you want to be informed of new releases, please register yourself as a
Singular user by using the registration form on the Singular home-
page http://www.singular.uni-kl.de. If for some reason you cannot
access the registration form, you can also register by sending an email to
singular@mathematik.uni-kl.de with subject line ‘register’ and body con-
taining the following data: your name, email address, organisation, country
and platform(s).

For the citation of Singular see

http://www.singular.uni-kl.de/how to cite.html,

for information on how to cite Singular.

You can also support Singular by informing us about your result obtained by
using Singular.

3

1.1 Overview of Singular

Singular is a Computer Algebra System for polynomial computations with
special emphasis on the needs of commutative algebra, algebraic geometry and
singularity theory.

Here are some of the most important features of Singular:

• Main computational objects: ideals/modules over very general polynomial
rings over various ground fields.

• Large variety of algorithms implemented in kernel (written in C/C++).

• Many more algorithms implemented as Singular libraries.

• Intuitive, C-like programming language.

• Extensive documentation: Manual (info, ps, and html), Publications.

• Available for most hard- and software platforms: Unix (HP-UX, SunOS,
Solaris, Linux, AIX), Windows, Macintosh.

Singular is a free software under the GNU General Public Licence.

Singular is developed by the Singular team at the Department of Mathe-
matics of the University of Kaiserslautern under the direction of Gert–Martin
Greuel, Gerhard Pfister and Hans Schönemann.

1.2 Availability

The latest information about Singular is always available from
http://www.singular.uni-kl.de.

1.3 History of Singular

1983 Greuel/Pfister: Existence of complete intersection singularities which are
not quasi-homogeneous, but Poincare-complex exact?

1983 Neuendorf (geb. Schemmel)/Pfister: Implementation of the Gröbner
basis–algorithm BuchMora for ZX–Spectrum in Basic.

1987 Pfister et al (Humboldt Uni Berlin): Buchmora for Atari in Modula-2:
Existence shown.

1989 Buchmora renamed to Singular; Developed jointly by groups from Berlin
(Pfister) and Kaiserslautern (Greuel).

1990 Ported to Unix; First user manual.

1993 Rewritten in C; Singular programming language – Libraries; Faster than
Macaulay.

1996 Multivariate polynomial factorization; gcd.

1997 Release of Singular version 1.0 (multivariate polynomial factorization;
gcd, syzygies, resolutions, communication links).

4

1998 Release of Singular version 1.2 (faster, primary decomposition, norma-
lization).

1999 Release of Singular version 1.4 (much faster, numerical data types and
algorithms, monodromy, moduli of space curves, debugger).

2001 Release of Singular version 2.0.

2002 Book A Singular Introduction to Commutative Algebra (by G.-M. Greuel
and G. Pfister, with contributions by O. Bachmann, C. Lossen and H.
Schönemann). The book includes a CD containing a distribution of Sin-
gular version 2-0-3.

2004 The Richard D. Jenks Prize for Excellence in Software Engineering for
Computer Algebra was awarded to the Singular team.

2005 Singular 3-0-0 for Mac OS X is available in the unstable branch of fink.

2005 Singular is included in the Knoppix/Math CD.

2005 The Singular web pages have been revised and equipped with a new
css-based design.

2007 Release of Singular version 3-0-3: available for most Unix platforms,
Windows and Mac OS X.

2007 Release of Singular version 3-0-4: available for most Unix platforms,
Windows and Mac OS X.

1.4 Acknowledgement

The development of Singular is directed and coordinated by Gert–Martin
Greuel, Gerhard Pfister and Hans Schönemann.

Currently, the Singular team has the following members: Michael Bricken-
stein, Wolfram Decker, Alexander Dreyer, Anne Frühbis-Krüger, Kai Krüger,
Viktor Levandovskyy, Oleksandr Motsak, Mathias Schulze and Oliver Wienand.

Former members of the Singular team are: Olaf Bachmann, Christoph
Lossen, Wolfgang Neumann, Wilfred Pohl, Jens Schmidt, Thomas Siebert,
Rüdiger Stobbe, Eric Westenberger and Tim Wichmann.

Further contributions to Singular were made by: Thomas Bayer, Isabelle
Bermejo, Markus Becker, Stas Bulygin, Kai Dehmann, Marcin Dumnicki,
Stephan Endrass, Jose Ignacio Farran, Vladimir Gerdt, Philippe Gimenez,
Christian Gorzel, Hubert Grassmann, Fernando Hernando, Agnes Heydtmann,
Dietmar Hillebrand, Tobias Hirsch, Manuel Kauers, Simon King, Anen Lakhal,
Martin Lamm, Santiago Laplagne, Gregoire Lecerf, Francisco Javier Lobillo,
Thomas Markwig, Bernd Martin, Michael Messollen, Andrea Mindnich, Jorge
Martin Morales, Thomas Nüssler, Carlos Rabelo, Alfredo Sanchez-Navarro,
Henrik Strohmayer, Christian Stussak, Imade Sulandra, Christine Theis,
Enrique Tobis, Alberto Vigneron-Tenorio, Moritz Wenk, Denis Yanovich,

5

Oleksandr Iena.

We should like to acknowledge the financial support given by the Volkswagen-
Stiftung, the Deutsche Forschungsgemeinschaft and the Stiftung für Innovation
des Landes Rheinland-Pfalz to the Singular project.

6

2 Getting started

Singular is a special purpose system for polynomial computations. Hence,
most of the powerful computations in Singular require the prior definition of
a ring. Most important rings are polynomial rings over a field, localizations
thereof, or quotient rings of such rings modulo an ideal. However, some simple
computations with integers (machine integers of limited size) and manipulations
of strings are available without a ring.

2.1 First steps

2.1.1 Notations and basic concepts

• Singular input and output as well as set words will be written in type-
writer face, e.g. exit; or help;.

• The whole Singular manual [GPS1] is available online by typing the
command help; or ?;. Explanation on single topics, e.g. on intmat,
which defines a matrix of integers, are obtained by

help intmat;

This shows the text from node intmat, in the printed manual. A more
detailed treatment of the command help; will be done in section 2.1.3.

• The symbol //-> starts Singular output, e.g.:

int i=5;
i;
//-> 5

• Square brackets are access operators for strings, integer vectors, ideals,
matrices, polynomials, resolutions, and lists, e.g.:

intvec v = 3,5,6,7,8;
v[4];
//-> 7

• Keys are also shown in typewriter face, such as:

n (press the key n),
RETURN (press the enter key),
CTRL-P (press the control key and P simultaneously).

• All objects have a type, e.g. integer variables are defined by the word int.
An assignment is done by the symbol = .

int k = 2;

7

Test for equality respectively inequality is done using == resp. != (or <>),
where 0 represents the boolean value FALSE, any other value represents
TRUE.

k == 2;
//-> 1
k != 2;
//-> 0

The value of an object is displayed by simply typing its name.

k;
//-> 2

On the other hand the output is suppressed if an assignment is made.

int j;
j = k+1;

The last displayed (!) result is always available with the special symbol _.

2*_; // the value from k displayed above
//-> 4

Text starting with // denotes a comment and is ignored in calculations,
as seen in the previous example.

2.1.2 Starting and terminating Singular

Obviously, the first question is, how does one start the programme and how is
it terminated? The most current version of Singular is started by using the
command

Singular

in the command line of the system. Entering

Singular -v

will prompt use of the version number of Singular when starting the pro-
gramme.

After the start, Singular shows an input prompt, a >, back and is available
to the user for interactive use. As soon as the user no longer wants to use this
possibility, he is recommended to terminate the programme. There are three
commands available for this: exit;, quit; or, for very lazy users, $;.

Please note that the semicolons in the preceding paragraph are part of the
Singular commands, and not inserted punctuations marks.

8

In general, every command in Singular ends with a semicolon!

The semicolon tells the computer that the inputted command is to be interpreted
and, if this is successful, be carried out. The programme comes up with a result
(possibly an error notification) followed by a new input prompt. Should the
user forget the semicolon, or have opened with a curved bracket and not closed
with one, Singular shows this with an input prompt ., in words a dot, and
enables further inputs, such as the missing semicolon. In this way it is possible
to stretch longer commands over several lines.

2.1.3 The online help help

The next most important information after the start and terminate commands
is how to find help if the user is stuck. Here Singular offers the command
help, or in short ?. Using the command help followed by a Singular
command, a Singular function or procedure name or a Singular library,
information to the respective objects are shown. For the libraries one receives
a list of the procedures contained therein, for commands, functions and
procedures one is shown their purpose and finds the general syntax as well as,
very important, examples for their use.

Examples:

? exit;
? standard.lib;
? printf;

The help can be shown on various browsers. Standard is Singular 3.0.4
Netscape. This means that Singular, after inputting e.g. help exit;, starts
Netscape and shows the help text to the exit;. (Via self–explanatory buttons
the entire handbook is available.) Apart from Netscape, further browsers are
available from which only info and builtin are named here. Users of Unix
operating systems are probably familiar with the first, the last shows the help
text on the current Singular page and has the advantage of functioning on
all computer platforms and without additional programmes (such as Netcape
or Info).

Through the command system("browsers"); one learns which browsers are
known to Singular, and through system("--browser","builtin"); the
browser can be changed from Netscape to builtin — in the same manner for
other browsers. In addition, it is possible to define the browser when starting
Singular, by starting the programme with the following command

Singular --browser=builtin

Whilst use of the Netscape help is self–explanatory, pointers are necessary, if
the user has never worked with Info. Anyone not working with Info may go
immediately to 2.1.4. To move around within Info, the following commands
should be used, which are all just one letter. Note that the RETURN or arrow
keys should never be used! Some commands read subsequently further input
from the command line at the bottom of the monitor. Here the TAB key can be

9

used to complete a partially inputted command.

Some important Info commands:

q leave the online help
n leaf on to the next menu button
p leaf back to preceding menu button
m choose a specified menu button by name
f call up a cross–reference
l call up the last visited menu button
b leaf back to the start of the menu buttons
e leaf forward to the end of the menu buttons
SPACE scroll forward one page
DEL scroll back one page
h call up the Info introduction
CTRL-H call up a short synopsis on the online help
s search the handbook for a defined string
1,. . .,9 call up the i-th subbutton of a menu

2.1.4 Interrupt Singular

Under Unix–like operating systems and under Windows NT, it is possible, via
the key combination CTRL-C. to force an interruption in Singular. (Does
not work wit ESingular!) Singular reacts with an output of the currently
performed command and awaits further instructions. Following options are
available:

a Singular carries out the current command and returns then to top level,
c Singular carries on,
q the programme Singular is terminated.

2.1.5 Editting inputs

If a command has been miswritten, or if an earlier command is needed again, it
is not absolutely necessary to renew the input. Existing Singular text can be
edited. For this, Singular records a history of all commands of a Singular
session. Below is a selection of the available key combinations for text editing:

TAB automatic completion of function and file names
←
CTRL-B moves the cursor to the left
→
CTRL-F moves the cursor to the right
CTRL-A moves the cursor to the beginning of the line
CTRL-E moves the cursor to the end of the line
CTRL-D deletes the letter under the cursor – never use in an empty line!
BACKSPACE
DEL
CTRL-H deletes the letter in front of the cursor

10

CTRL-K deletes all from the cursor to the end of the line
CTRL-U deletes all from the cursor to the beginning of the line
↓
CTRL-N supplies the next line from the history
↑
CTRL-P supplies the preceding line from the history
RETURN sends the current line to the Singular–Parser

2.1.6 Types of data in Singular and rings

Singular operates with a whole range of diverse structures, which are available
as various data types. If an object in Singular is to be defined, that is, a
variable entered, it is necessary to allocate it to a data type right from the start.

Data types in Singular depend on a meta structure, the so-called ring, over
which they exist, with the exception of string, int, intvec und intmat. To
perform a calculation in Singular it is first absolutely necessary to define the
ring over which one is working.

ring r=0,x,lp; The amount of polynomials in the variables
x with coefficients in the rational numbers
Q and lexicographical ordering.

ring r=(0,a,b),(x,y,z),lp; The amount of polynomials in the variables
x, y, z, where the coefficients are rational
terms in the variables a and b. Of course,
instead of a, b resp. x, y, z, also any other
variables can be shown. Important is that
the variables in the first brackets can appear
in the denominator of fractions, the ones in
the second brackets may not.

ring r=32003,x(1..10),dp; The amount of polynomials in the variables
x1, . . . , x10 with coefficients in the field of
characteristic 32003 and degree reverse lex-
icographical ordering.

ring r=(real,15),x,lp; The amount of polynomials in the variables
x with coefficients in real numbers R — for
calculations with 15 places after the decimal
point.

We shall calculate first over the rational numbers Q. We do not need real
numbers as floating point numbers or even complex numbers until later.

A list of the available data types in Singular is given below, and we also show
for each an example, by defining a variable of the relative type and, through the
operator =, allocating a value to it.

11

int i=1; The data type integer represents the
machine numbers (= whole numbers be-
tween −231 und 231 − 1). In addition,
true values (= boolean) are represented
as integers, 0 = FALSE, 1 = TRUE.

string s="Hallo"; strings are any chains of letters, always
boxed in by inverted commas.

intvec iv=1,2,3,4; A vector of integers.
intmat im[2][3]=1,2,3,4,5,6; A matrix with two lines and three

columns with integer entries,(
1 2 3
4 5 6

)
.

ring R=(0,a),(x,y),lp; The ring Q(a)[x, y] with lexicographical
order. For further explanations please see
the handbook [GPS1].

number n=4/6; numbers are the elements of the
field based on the ring. By ring
r=0,x,lp; the rational numbers, by
ring r=(0,a),x,lp; also fractions of
polynomials in a with complete number
coefficients, i.e. a

2+1
a−1 .

list l=n,iv,s; A list can contain objects of different
types. Through l[2], the second entry
of 1 can be seized.

matrix m[2][3]=1,2,3,4,5,6; A matrix with two lines and three
columns, the entries being either of type
poly or of type number, as shown here(

1 2 3
4 5 6

)
.

vector v=[1,2,3]; A vector in module R3. If the entries are
all of type number, we can interpret it as
vector over the field.

module mo=v,[x,x2,x+1]; The mounted module in R3 by v and
(x, x2, x+ 1)t.

poly f=x2+2x+1; A polynomial in the indeterminates of the
ring with numbers as coefficients, here
f = x2 + 2x + 1. Note that numbers
in front of the monomials are interpreted
as coefficients, whereas Singular inter-
prets numbers after single variables as ex-
ponents.

12

ideal i=f,x3; That from f and x3 generated ideal in R.
qring Q=i; The quotient ring R/i.
map g=R,x; The rest class formation of R after Q, which is defined by

x 7→ x.
def j; If, at the point time when the definition of a variable is

fixed, one does not want to fix the type, it can be defined
as def. The first allocation of a value to the variable also
fixes the data type.

link For the data type link, we refer to the handbook [GPS1].
resolution For the data type resolution, we refer to the handbook

[GPS1].

At first glance it might seem as though the matrices im and m are identical. In
the case of Singular that is not the case as they are of different types!

If one wishes to calculate with decimal points, having the ground field R avail-
able, then one must replace, in the definition of the ring, the characteristic 0
with real (resp. (real,50), if one wishes to calculate with 50 decimal points),
e.g.

ring r=(real,10),x,lp;

Even the complex numbers are available by replacing real with complex. i
defines then the imaginary unit, i.e. the square root of −1.

2.1.7 Procedures

If there exists a definite problem which is to be solved with Singular, then
one calls up the programme, enters the command sequence and obtains a result.
Very often, the same calculations are to be carried out with different inputs.
Then it makes sense to write the command sequence as a procedure, into which
the desired inputs are entered as arguments and which returns the solutions.

The syntax of a procedure is fairly simple:

proc PROCEDURENAME [PARAMETERLIST]
{
PROCEDUREBODY

}

For PROCEDURENAME, any not otherwise delegated letter sequence can be used.
The types and names of the arguments which are passed on to the procedure
are laid down in the PARAMETERLIST. The PARAMETERLIST should be encased
in round brackets. The PROCEDUREBODY contains a sequence of permissible Sin-
gular code. If the procedure is to return a result, the result should be stored
in a variable result and the procedure should terminate with the command
return(result);.

An example is more useful than thousands of words:

proc permcol (matrix A, int c1, int c2)
{
matrix B=A;

13

B[1..nrows(B),c1]=A[1..nrows(A),c2];
B[1..nrows(B),c2]=A[1..nrows(A),c1];
return(B);

}

The procedure permcol should exchange two columns of a matrix. For this
three arguments are necessary. The first argument is given the name A and is
of the type matrix, the two following are c1 and c2 and are of type integer.
Singular instructions follows and the result is stored in the variable B of type
matrix, which is then returned with return(B);. This means, in particular,
that the result of the procedure is of type matrix 2.1.6).

A procedure can be called up by entering the procedure name, followed by the
arguments in round brackets. E.g.

LIB "matrix.lib";
LIB "inout.lib";
ring r=0,x,lp;
matrix A[3][3]=1,2,3,4,5,6,7,8,9;
pmat(A,2);
//-> 1, 2, 3,

4, 5, 6,
7, 8, 9

matrix B=permcol(A,2,3);
pmat(B,2);
//-> 1, 3, 2,

4, 6, 5,
7, 9, 8

Variables, which are defined within a procedure, are only known there and
can, therefore, have the same name as objects which are defined outside the
procedure.

Here are two more trivial examples.

(a) Trace of a matrix:

Our aim is to write a procedure that computes the trace of a quadratic
matrix M ∈ Mat(n× n,Z). Therefore we have to consider first how such
a matrix is declared:

intmat M[3][3] = 1,2,3,4,5,6,7,8,9;
M;
//-> 1,2,3,
//-> 4,5,6,
//-> 7,8,9

Note that intmat is independent of a given basering.
A possible procedure that returns the trace of a quadratic input-matrix
A ∈ Mat(n× n,Z) is as follows:

14

proc trma(intmat A)
{
if (nrows(A) != ncols(A))
{
print("Attention: A is not a square matrix");
return(0);

}
int re = 0;
int i = 1;
while (i <= nrows(A))
{
re = re + A[i,i];
i++;

}
return(re);

}

Hence, we obtain:

trma(M);
//-> 15
trace(M); //the built-in SINGULAR command
//-> 15

(b) Greatest common divisor of two integers:

Our aim is to write a prodedure that computes the greatest common
divisor of two integers a, b ∈ Z. A possible realization is the following:

proc GCD(int a, int b)
{
int r = a % b;
while (r != 0)
{
a = b;
b = r;
r = a % b;

}
return(b);

}

GCD(15, 21);
//-> 3
GCD(2765851, 255781);
//-> 31
gcd(2765851, 255781); //the built-in SINGULAR command
//-> 31

15

2.1.8 Libraries

To make procedures available for more than one Singular session, it makes
sense to store them in files, which can be re-read by so-called Singular —
Libraries. The library names often allow conclusions to be drawn from the
procedures contained and always have the ending .lib. Libraries are read into
Singular through the command LIB followed by the encapsulated library name
in inverted commas ", such as

LIB "123456.lib";

(Library names should, if possible, only consist of eight letters, to guarantee
compatibility with systems such as Dos!) If they are not Singular’s own li-
braries, then they should be in the register from which Singular is started.

Of course, a library must conform to certain syntax rules, and procedures, which
are stored in libraries, should be extended by two explanatory additions. We
show this in an example:

///
version="1.0";

info="
LIBRARY: 123456.lib
AUTHOR: Stefan Steidel, email: steidel@mathematik.uni-kl.de
PROCEDURES:
permcol(matrix,int,int) interchanges columns of the matrix
permrow(matrix,int,int) interchanges rows of the matrix

";

///
LIB "inout.lib";
///

proc permcol (matrix A, int c1, int c2)
"USAGE: permcol(A,c1,c2); A matrix, c1,c2 positive integers
RETURN: matrix, A being modified by permuting column c1 and c2
NOTE: space for important remarks

also over more than one row
EXAMPLE: example permcol; shows an example
"
{
matrix B=A;
B[1..nrows(B),c1]=A[1..nrows(A),c2];
B[1..nrows(B),c2]=A[1..nrows(A),c1];
return(B);

}

example
{ "EXAMPLE:"; echo = 2;

ring r=0,x,lp;

16

matrix A[3][3]=1,2,3,4,5,6,7,8,9;
pmat(A);
pmat(permcol(A,2,3));

}
.
.
.

If a double slash // in a line appears, the rest of the line is interpreted as a
comment and ignored.
The first section, to be found between both the comment lines, is the so–called
head of the library. The first line contains the set word version, through which
the version number of the library is fixed. General information to the library
follows the set word info.
It should be noted that under the item PROCEDURES: all procedure names con-
tained in the library are depicted with a maximum of one–line.
Singular shows this part when help is requested for the relative library, that
is

help 123456.lib;

It should also be noted that strings are allocated to version and info by means
of the sign of equality, =, so that the inverted commas ", which box them in,
are just as necessary as the semicolon at the end of the line!
Section two serves the loading from other libraries, whose procedures are nec-
essary for one’s own procedures. As an example, the library inout.lib, whose
procedure pmat in the example part of the procedure permcol is used.
In the third section the procedures follow, simply strung together. (It should be
noted that the command proc is always shown at the beginning of a new line!)
It is recommended that the Syntax in section 2.1.7 is extended by two sections
for procedures.
A commentary block can be inserted between the procedure head and the text
body, in inverted commas ", which contains certain key words followed by the
relative information. Under USAGE: should be shown how the command is sum-
monsed and of which type the arguments are. RETURN: should contain informa-
tion on which type the return is and, if necessary, any further information. NOTE:
is used to show important comments to the procedure, its use, etc. EXAMPLE:
shows tips as to how an example can be shown under Singular. The com-
mentary block displayed there contains information which is shown when help
is requested to a procedure under Singular, z.B. through

help permcol;

The second additional section at the end of the procedure is initiated through
the set word example, followed by a section in curly brackets which contains
the Singular code. The aim is to show an example for the operation of the
procedure which simplifies its use for the user. The user obtains the example
by entering example PROCEDURENAME;.

17

2.1.9 Output in files / input in files

The command write offer the possibility to store the values of variables or any
strings in a file. For this, the variable values are converted to strings. The
following lines store variable values, resp. a string, in the file test1.txt:

int a=5;
int b=4;
write("test1.txt",a,b);
write("test1.txt","Das ist Singular.");

Several variables or strings can be shown, separated by commas. Their values
are written in each case in a new line.

Data contained in a file can be read in by the command read. They are, however,
interpreted as strings, e.g.

read("test1.txt");
//-> 5

4
Das ist Singular.

Should Singular code, which is read in from a file, be recognized as such, then
the read command must be passed on to the command execute. Should the
file test2.txt contain the following lines,

4*5-3;
6^3;

which is to be done via

write("test2.txt","4*5-3;"+"6^3;");
read("test2.txt");
//-> 4*5-3;6^3;

then the command

execute(read("test2.txt"));

leads to the following Singular output:

//-> 17
216

A short form for execute(read(...)) is <, e.g.

< "test2.txt";

Anyone wanting to document a Singular session for security in a file, e.g.
test3.txt, can do this with the command monitor, e.g.

monitor("test3.txt","io");

18

The option "io" causes input as well as output to be stored. The omission
of one of the letters leads to only the input or only the output being stored.
The option monitor is very helpful when working on an operating system on
which Singular is instable or on which an editor is available, which is no easily
manageable.

Please note that monitor opens a file, but does not terminate it. This can be
done by the following input:

monitor("");

2.2 Ringindependent objects

As we already mentioned in section 2.1.2, once Singular is started, it awaits
an input after the prompt >. Every statement has to be terminated by ;

37+5;
//-> 42

Integer variables are ringindependent objects that are defined by the word int.
To keep in mind, the assignment is done by the symbol = .

int k = 2;

In addition there is a bigint expression available in order to define a larger
integer variable.

// Note: 11*13*17*100*200*2000
// returns a machine integer:
11*13*17*100*200*2000;
//-> // ** int overflow(*), result may be wrong
//-> -1544247808
// using the type cast number for a greater allowed range
bigint(11)*13*17*100*200*2000;
//-> 97240000000

Next, we define a 3×3 matrix of integers and initialize it with some values, row
by row from left to right:

intmat m[3][3] = 1,2,3,4,5,6,7,8,9;

A single matrix entry may be selected and changed using square brackets [and
].

m[2,3];
//-> 6
m[1,2]=0;
m;
//-> 1,0,3,
//-> 4,5,6,
//-> 7,8,9

To calculate the trace of this matrix, we use a for loop. The curly brackets ({ and
}) denote the beginning resp. end of a block. If you define a variable without
giving an initial value, as the variable tr in the example below, Singular assigns
a default value for the specific type. In this case, the default value for integers
is 0.

19

int j,tr;
for (j=1; j <= 3; j++) { tr=tr + m[j,j]; }
tr;
//-> 15

Variables of type string can also be defined and used without a ring being active.
Strings are delimited by " (double quotes). They may be used to comment the
output of a computation or to give it a nice format. If a string contains valid
Singular commands, it can be executed using the function execute. The result
is the same as if the commands would have been written on the command line.
This feature is especially useful to define new rings inside procedures.

"example for strings:";
//-> example for strings:

string s="The element of m ";
s = s + "at position [2,3] is:"; //concatenation of strings by +
s , m[2,3] , ".";
//-> The element of m at position [3,2] is: 6 .

s="m[2,1]=0; m;";
execute(s);
//-> 1,0,3,
//-> 0,5,6,
//-> 7,8,9

This example shows that expressions can be separated by , (comma) giving a
list of expressions. Singular evaluates each expression in this list and prints
all results separated by spaces.

The following operators are given for the data type list.

+ Combines the elements of two lists.
delete Deletes an element from a list, delete(L,3) deletes the third

element of the list L (the input is not changed).
insert Inserts an element into a list. insert(L,4) inserts into the list L,

the element 4 in first place, insert(L,4,2) after second position,
i.e. in third place (the input is not changed).

Here is a simple example:

string t = "arbitrary element";
intvec v = 1,2,3;
list L1 = 23,t,3;
list L2 = v,45;
L1;
//-> [1]:
//-> 23
//-> [2]:
//-> arbitrary element
//-> [3]:
//-> 3

20

L2;
//-> [1]:
//-> 1,2,3
//-> [2]:
//-> 45

list L = L1 + L2;
L;
//-> [1]:
//-> 23
//-> [2]:
//-> arbitrary element
//-> [3]:
//-> 3
//-> [4]:
//-> 1,2,3
//-> [5]:
//-> 45

delete(L,3);
//-> [1]:
//-> 23
//-> [2]:
//-> arbitrary element
//-> [3]:
//-> 1,2,3
//-> [4]:
//-> 45

insert(L,4);
//-> [1]:
//-> 4
//-> [2]:
//-> 23
//-> [3]:
//-> arbitrary element
//-> [4]:
//-> 3
//-> [5]:
//-> 1,2,3
//-> [6]:
//-> 45

insert(L,4,2);
//-> [1]:
//-> 23
//-> [2]:
//-> arbitrary element
//-> [3]:
//-> 4

21

//-> [4]:
//-> 3
//-> [5]:
//-> 1,2,3
//-> [6]:
//-> 45

L;
//-> [1]:
//-> 23
//-> [2]:
//-> arbitrary element
//-> [3]:
//-> 3
//-> [4]:
//-> 1,2,3
//-> [5]:
//-> 45

Note that lists are not always ringindependent. Lists containing an element
from a ring belong to that ring.

2.3 Rings and standard bases

To calculate with objects as ideals, matrices, modules, and polynomial vectors,
a ring has to be defined first.

ring r = 0,(x,y,z),dp;

The definition of a ring consists of three parts: the first part determines the
ground field, the second part determines the names of the ring variables, and
the third part determines the monomial ordering to be used. So the example
above declares a polynomial ring called r with a ground field of characteristic
0 (i.e., the rational numbers) and ring variables called x, y, and z. The dp at
the end means that the degree reverse lexicographical ordering should be used.

Other ring declarations:

ring r1=32003,(x,y,z),dp;
characteristic 32003, variables x, y, and z and ordering dp.

ring r2=32003,(a,b,c,d),lp;
characteristic 32003, variable names a, b, c, d and lexicographical or-
dering.

ring r3=7,(x(1..10)),ds;
characteristic 7, variable names x(1),...,x(10), negative degree revers
lexicographical ordering (ds).

ring r4=(0,a),(mu,nu),lp;
transcendental extension of Q by a, variable names mu and nu.

22

Typing the name of a ring prints its definition. The example below shows,
that the default ring in Singular is (Z/32003Z)[x, y, z] with degree reverse
lexicographical ordering:

ring r5;
r5;
//-> // characteristic : 32003
//-> // number of vars : 3
//-> // block 1 : ordering dp
//-> // : names x y z
//-> // block 2 : ordering C

Defining a ring makes this ring the current active basering, so each ring definition
above switches to a new basering. The concept of rings in Singular is discussed
in detail in the chapter "Rings and orderings" of the Singular manual [GPS1].

Furthermore one can define a ring r6 which extends the ring r by adding new
variables in front of the old variables.

LIB "ring.lib";
def r6 = extendring(3,"t(","dp");

The characteristic of r6 is the characteristic of r, the new variables are
t(1),t(2),t(3) and the ordering is the product ordering of the ordering of
r and dp.
The basering now is r5. That means to work in the ring r6 we have to switch
to it. This can be done using the function setring:

setring r6;
r6;
//-> // characteristic : 0
//-> // number of vars : 6
//-> // block 1 : ordering dp
//-> // : names t(1) t(2) t(3)
//-> // block 2 : ordering dp
//-> // : names x y z
//-> // block 3 : ordering C

Since we want to calcualate in the ring r, which we defined first, we have to
switch back to it.

setring r;

Once a ring is active, we can define polynomials. A monomial, say x3 may
be entered in two ways: either using the power operator ^, saying x^3, or in
short-hand notation without operator, saying x3. Note, that the short-hand
notation is forbidden if the name of the ring variable consists of more than one
character. Note, that Singular always expands brackets and automatically
sorts the terms with respect to the monomial ordering of the basering.

poly f = x3+y3+(x-y)*x2y2+z2;
f;
//-> x3y2-x2y3+x3+y3+z2

23

The command size determines in general the number of "single entries" in an
object. In particular, for polynomials, size determines the number of monomials.

size(f);
//-> 5

A natural question is to ask if a point e.g. (x, y, z) = (1, 2, 0) lies on the variety
defined by the polynomials f and g. For this we define an ideal generated by
both polynomials, substitute the coordinates of the point for the ring variables,
and check if the result is zero:

poly g = f^2 *(2x-y);
ideal I = f,g;
ideal J= subst(I,x,1,y,2,z,0);
J;
//-> J[1]=5
//-> J[2]=0

Since the result is not zero, the point (1, 2, 0) does not lie on the variety V (f, g).

Another question is to decide whether some function vanishes on a variety, or
in algebraic terms if a polynomial is contained in a given ideal. For this we
calculate a standard basis using the command groebner and afterwards reduce
the polynomial with respect to this standard basis.

ideal sI = groebner(f);
reduce(g,sI);
//-> 0

As the result is 0 the polynomial g belongs to the ideal defined by f .
The function groebner, like many other functions in Singular, prints a pro-
tocol during calculation, if desired. The command option(prot); enables pro-
tocoling whereas option(noprot); turns it off.
Singular’s implementation of Buchberger’s algorithm is available via the std
command (std referring to standard basis). The computation of reduced Groeb-
ner and standard bases may be forced by setting option(redSB). However, de-
pending on the monomial ordering of the active basering, it may be advisable
to use the groebner command instead. This command is provided by the Sin-
gular library standard.lib which is automatically loaded when starting a
Singular session. Depending on some heuristics, groebner either refers to the
std command (e.g. for rings with ordering dp), or to one of the other imple-
mented Groebner bases algorithms. For information on the heuristics behind
groebner, see the library file standard.lib.

ideal I1 = x3+y2,xyz-y2;
std(I1);
//-> _[1]=xyz-y2
//-> _[2]=x3+y2
//-> _[3]=x2y2+y3z
//-> _[4]=y3z2+xy3

24

groebner(I1);
//-> _[1]=xyz-y2
//-> _[2]=x3+y2
//-> _[3]=x2y2+y3z
//-> _[4]=y3z2+xy3

The same generators for an ideal give different standard bases with respect to
different orderings:

ring A = 0,(x,y),dp; //global ordering: degrevlex
ideal I2 = x10+x9y2,y8-x2y7;
ideal sI2 = std(I2);
sI2;
//-> sI2[1]=x2y7-y8 sI2[2]=x9y2+x10 sI2[3]=x12y+xy11
//-> sI2[4]=x13-xy12 sI2[5]=y14+xy12 sI2[6]=xy13+y12

ring A1 = 0,(x,y),lp; //global ordering: lex
ideal I3 = fetch(A,I2);
ideal sI3 = std(I3);
sI3;
//-> sI3[1]=y15-y12
//-> sI3[2]=xy12+y14
//-> sI3[3]=x2y7-y8
//-> sI3[4]=x10+x9y2

The command kbase calculates a basis of the polynomial ring modulo an ideal,
if the quotient ring is finite dimensional. As an example we calculate the Milnor
number of a hypersurface singularity in the global and local case. This is the
vector space dimension of the polynomial ring modulo the Jacobian ideal in the
global case resp. of the power series ring modulo the Jacobian ideal in the local
case. See [GPS1] Critical points, for a detailed explanation.
The Jacobian ideal is obtained with the command jacob.

setring r;
ideal J = jacob(f);
//-> // ** redefining J **
J;
//-> J[1]=3x2y2-2xy3+3x2
//-> J[2]=2x3y-3x2y2+3y2
//-> J[3]=2z

Singular prints the line // ** redefining J **. This indicates that we have
previously defined a variable with name J of type ideal (see above).
To obtain a representing set of the quotient vectorspace we first calculate a
standard basis, then we apply the function kbase to this standard basis.

J = groebner(J);
ideal kJ = kbase(J);
kJ;
//-> kJ[1]=y4
//-> kJ[2]=xy3
//-> kJ[3]=y3

25

//-> kJ[4]=xy2
//-> kJ[5]=y2
//-> kJ[6]=x2y
//-> kJ[7]=xy
//-> kJ[8]=y
//-> kJ[9]=x3
//-> kJ[10]=x2
//-> kJ[11]=x
//-> kJ[12]=1

Then

size(kJ);
//-> 12

gives the desired vector space dimension of Q[x,y,z]/jacob(f). As in Sin-
gular the functions may take the input directly from earlier calculations, the
whole sequence of commands may be written in one single statement.

size(kbase(groebner(jacob(f))));
//-> 12

When we are not interested in a basis of the quotient vector space, but only in
the resulting dimension we may even use the command vdim and write:

vdim(groebner(jacob(f)));
//-> 12

26

3 Examples

3.1 Computation in fields

In Singular, field elements have the type number but notice that in order to
compute in fields, i.e. to define and use numbers one has to define a polynomial
ring with at least one variable and a specified monomial ordering.

(a) Computation in the field of rational numbers:

ring A = 0,x,dp;
number n = 12345/6789;
n^5; //common divisors are cancelled
//-> 1179910858126071875/59350279669807543

Note: Typing just 123456789^5; will result in integer overflow since
123456789 is considered as an integer (machine integer of limited size)
and not as an element in the field of rational numbers; however, also
correct would be number(123456789)^5;.

int a = 5;
int b = 3;
a;
//-> 5
a+b;
//-> 8
a-b;
//-> 2
a/b;
//-> 1
a%b;
//-> 2
a*b;
//-> 15
a^b;
//-> 125
5/3;
//-> 5/3
number c = 5;
number d = 3;
c/d;
//-> 5/3

(b) Computation in finite fields:

ring A1 = 32003,x,dp; //finite field Z/32003
number(123456789)^5;
//-> 8705
number a = 25000;

27

number b = 20000;
a+b;
//-> 12997
a/b;
//-> 8002

ring A2 = (2^3,a),x,dp; //finite (Galois) field GF(8)
//with 8 elements

number n = a+a2; //a is a generator of the group
//GF(8)-{0}

n^5;
//-> a6
minpoly; //minimal polynomial of GF(8)
//-> 1*a^3+1*a^1+1*a^0

ring A3 = (2,a),x,dp; //infinite field Z/2(a) of
//characteristic 2

minpoly = a20+a3+1; //define a minimal polynomial
//a^20+a^3+1
//now the ground field is
//GF(2^20)=Z/2[a]/<a^20+a^3+1>,

number n = a+a2; //a finite field
//with 2^20 elements

n^5; //a is a generator of the group
//GF(2^20)-{0}

//-> (a10+a9+a6+a5)

Note: For computation in finite fields Z/pZ, p ≤ 32003, respectively
GF (pn), pn ≤ 215, one should use rings as A1 respectively A2 since for these
fields Singular uses look–up tables, which is quite fast. For other finite
fields a minimal polynomial as in A3 must be specified. Singular does
not, however, check the irreducibility of the chosen minimal polynomial.
This can be done as in the following example.

ring tst = 2,a,dp;
factorize(a20+a2+1,1);
//-> _[1]=a3+a+1 //not irreducible! We have 2 factors
//-> _[2]=a7+a5+a4+a3+1
factorize(a20+a3+1,1); //irreducible
//-> _[1]=a20+a3+1

To obtain the multiplicities of the factors, use factorize(a20+a2+1);

(c) Computation with real and complex floating point numbers, 30 digits pre-
cision:

ring R1 = (real,30),x,dp;
number n = 123456789.0;

28

n^5; //compute with a precision of 30 digits
//-> 0.286797186029971810723376143809e+41

Note: n5 is a number whose integral part has 41 digits (indicated by
e+41). However, only 30 digits are computed.

ring R2 = (complex,30,I),x,dp; //I denotes
//imaginary unit

number n = 123456789.0+0.0001*I;
n^5; //complex number with

//30 digits precision
//-> (0.286797186029971810723374262133e+41

+I*116152861399129622075046746710)

(d) Computation with rational numbers and parameters, that is, in Q(a, b, c),
the quotient field of Q[a, b, c]:

ring R3 = (0,a,b,c),x,dp;
number n = 12345a+12345/(78bc);
n^2;
//->(103021740900a2b2c2+2641583100abc+16933225)/(676b2c2)
n/9c;
//-> (320970abc+4115)/(234bc2)

3.2 Computation in polynomial rings

We shall now show how to define the polynomial ring in n variables x1, . . . , xn
over the above mentioned fields K. We can do this for any n, but we have
to specify an integer n first. The same remark applies if we work with tran-
scendental extensions of degree m; we usually call the elements t1, . . . , tm of a
transcendental basis (free) parameters. If g is any non–zero polynomial in the
parameters t1, . . . , tm, then g and 1/g are numbers in the corresponding ring.
For further examples see [GPS1].

(a) Computation with polynomials:

Let us create polynomial rings over different fields. By typing the name
of the ring we obtain all relevant information about the ring.

ring A = 0,(x,y,z),dp;
poly f = x3+y2; //same as x^3+y^2
f*f-f;
//-> x6+2x3y2+y4-x3-y2

Singular understands short (e.g., 2x2+y3) and long (e.g., 2*x^2+y^3)
input. Computations in polynomial rings over other fields follow the same
pattern. Try ring R=32003,x(1..3),dp; (finite ground field), and type

29

R; to obtain information about the ring. The command setring allows
switching from one ring to another, for example, setring A; makes A the
basering.

poly g = 2xy-z2;
f+g;
//-> x3+2xy+y2-z2
f*g;
//-> 2x4y-x3z2+2xy3-y2z2

(b) Declaration and operation on ideals:

ideal I = 0,x,0,1;
I;
//-> I[1]=0
//-> I[2]=x
//-> I[3]=0
//-> I[4]=1
I + 0; // addition with simplification
//-> _[1]=1
ideal J = I,0,x,x-z;
J;
//-> J[1]=0
//-> J[2]=x
//-> J[3]=0
//-> J[4]=1
//-> J[5]=0
//-> J[6]=x
//-> J[7]=x-z
I * J; // multiplication with simplification
//-> _[1]=1
I*x;
//-> _[1]=0
//-> _[2]=x2
//-> _[3]=0
//-> _[4]=x

ideal m1 = maxideal(1);
m1^2; // exponentiation
//-> _[1]=x2
//-> _[2]=xy
//-> _[3]=xz
//-> _[4]=y2
//-> _[5]=yz
//-> _[6]=z2
ideal m2 = maxideal(2);
m2;
//-> _[1]=x2
//-> _[2]=xy

30

//-> _[3]=xz
//-> _[4]=y2
//-> _[5]=yz
//-> _[6]=z2

ideal II = I[2..4];
II;
//-> II[1]=x
//-> II[2]=0
//-> II[3]=1

3.3 Methods for creating ring maps

Singular has three possibilities, fetch, imap and map, to define ring maps by
giving the name of the preimage ring and a list of polynomials f1, . . . , fn (as
many as there are variables in the preimage ring) in the current basering. The
commands fetch, respectively imap, map an object directly from the preimage
ring to the basering whereas fetch maps the first variable to the first, the second
to the second and so on (hence, is convenient for renaming the variables), while
imap maps a variable to the variable with the same name (or to 0 if it does
not exist), hence is convenient for inclusion of sub–rings or for changing the
monomial ordering.

Note: All maps go from a predefined ring to the basering.

map: preimage ring −→ basering

(a) General definition of a map:

ring A = 0,(a,b,c),dp;
poly f = a+b+ab+c3;
f;
//-> c3+ab+a+b

ring B = 0,(x,y,z),dp;
map F = A, x+y,x-y,z; //map F from ring A (to

//basering B) sending
//a -> x+y, b -> x-y, c -> z

poly g = F(f); //apply F
g;
//-> z3+x2-y2+2x

(b) Special maps (imap,fetch):

ring A1 = 0,(x,y,c,b,a,z),dp;
imap(A,f); //imap preserves names of variables
//-> c3+ba+b+a
fetch(A,f); //fetch preserves order of variables
//-> c3+xy+x+y

31

3.4 Properties of ring maps

(1) Checking injectivity:

ring S = 0,(a,b,c),lp;
ring R = 0,(x,y,z),dp;
ideal i = x, y, x2-y3;
map phi = S,i; //a map from S to R, sending

//a -> x, b -> y, c -> x2-y3
LIB "algebra.lib"; //load algebra.lib

By default, Singular displays the names and paths of those libraries
which are used by algebra.lib and which are also loaded. We suppress
this message.

We test injectivity using the procedure is_injective, then we compute
the kernel by using the procedure alg_kernel (which displays the kernel,
an object of the preimage ring, as a string).

is_injective(phi,S);
//-> 0 // phi is not injective
ideal j = x, x+y, z-x2+y3;
map psi = S,j; // another map from S to R
is_injective(psi,S);
//-> 1 // psi is injective
alg_kernel(phi,S);
//-> b^3-a^2+c // <b^3-a^2+c> = Ker(phi)
alg_kernel(psi,S);
//-> 0

(2) Computing the preimage:

Using the preimage command, we must first go back to S, since the preim-
age is an ideal in the preimage ring.

ideal Z; //the zero ideal in R
setring S;
preimage(R,phi,Z); //computes kernel of phi in S
//-> _[1]=a2-b3-c //kernel of phi = preimage of Z

(3) Checking surjectivity and bijectivity :

setring R;
is_surjective(psi,S);
//-> 1
is_bijective(psi,S); //faster than is_injective,

//is_surjective
//-> 1

32

(4) Computing the inverse in quotient rings:

If I ⊂ K[x] = K[x1, . . . , xn] is a maximal ideal, then the quotient ring
K[x]/I is a field. To be able to compute effectively in the field K[x]/I we
need, in addition to the ring operations, the inverse of a non–zero element.
The following example shows that we can effectively compute in all fields
of finite type over a prime field.
If the polynomial f is invertible, then the command lift(f,1)[1,1] gives
the inverse (lift checks whether 1 ∈ 〈f〉 and then expresses 1 as a multiple
of f):

ring R=(0,x),(y,z),dp;
ideal I=-z5+y2+(x2),-y2+z+(-x);
I=std(I);
qring Q=I;

We shall now compute the inverse of z in Q = R/I.

poly p=lift(z,1)[1,1];
p;
//-> 1/(x2-x)*z4-1/(x2-x)

We make a test for p being the inverse of z.

reduce(p*z,std(0));
//-> 1

The ideal I is a maximal ideal if and only if R/I is a field. We shall now
prove that, in our example, I is a maximal ideal.

ring R1=(0,x),(z,y),lp;
ideal I=imap(R,I);
I=std(I);
I;
//-> I[1]=y10+(5x)*y8+(10x2)*y6+(10x3)*y4+(5x4-1)*y2+(x5-x2)
//-> I[2]=z-y2+(-x)

Since Q(x)[z, y]/〈z − y2− x〉 ∼= Q(x)[y], we see that

R/I ∼= Q(x)[y]/〈y10+ 5xy8+ 10x2y6+ 10x3y4+ (5x4− 1)y2+ x5− x2〉 .

factorize(I[1]);
//-> [1]:
//-> _[1]=1
//-> _[2]=y10+(5x)*y8+(10x2)*y6+(10x3)*y4+(5x4-1)*y2
//-> +(x5-x2)
//-> [2]:
//-> 1,1

The polynomial I[1] is irreducible and R/I is a field.

33

3.5 Monomial orderings

Global orderings are denoted with a p at the end, referring to “polynomial
ring” while local orderings end with an s, referring to “series ring”. Note that
Singular stores and outputs a polynomial in an ordered way, in decreasing
order.

(a) Global orderings:

ring A1 = 0,(x,y,z),lp; //lexicographical
poly f = x3yz + y5 + z4 + x3 + xy2; f;
//-> x3yz+x3+xy2+y5+z4

ring A2 = 0,(x,y,z),dp; //degree reverse
//lexicographical

poly f = imap(A1,f); f;
//-> y5+x3yz+z4+x3+xy2

ring A3 = 0,(x,y,z),Dp; //degree lexicographical
poly f = imap(A1,f); f;
//-> x3yz+y5+z4+x3+xy2

ring A4 = 0,(x,y,z),Wp(5,3,2); //weighted degree
//lexicographical

poly f = imap(A1,f); f;
//-> x3yz+x3+y5+xy2+z4

(b) Local orderings:

ring A5 = 0,(x,y,z),ls; //negative lexicographical
poly f = imap(A1,f); f;
//-> z4+y5+xy2+x3+x3yz

ring A6 = 0,(x,y,z),ds; //negative degree reverse
//lexicographical

poly f = imap(A1,f); f;
//-> x3+xy2+z4+y5+x3yz

ring A7 = 0,(x,y,z),Ws(5,3,2); //negative weighted degree
//lexicographical

poly f = imap(A1,f); f;
//-> z4+xy2+x3+y5+x3yz

(c) Product and matrix orderings:

ring A8 = 0,(x,y,z),(dp(1),ds(2)); //mixed product ordering
poly f = imap(A1,f); f;
//-> x3+x3yz+xy2+z4+y5

34

intmat A[3][3] = -1, -1, -1, 0, 0, 1, 0, 1, 0;
print(A);
//-> -1 -1 -1
//-> 0 0 1
//-> 0 1 0

Now define your own matrix ordering using A:

ring A9 = 0,(x,y,z),M(A); //a local ordering
poly f = imap(A1,f); f;
//-> xy2+x3+z4+x3yz+y5

3.6 Leading data

ring A = 0,(x,y,z),lp;
poly f = y4z3+2x2y2z2+3x5+4z4+5y2;
f; //display f in a lex-ordered way
//-> 3x5+2x2y2z2+y4z3+5y2+4z4
leadmonom(f); //leading monomial
//-> x5
leadexp(f); //leading exponent
//-> 5,0,0
lead(f); //leading term
//-> 3x5
leadcoef(f); //leading coefficient
//-> 3
f - lead(f); //tail
//-> 2x2y2z2+y4z3+5y2+4z4

3.7 Normal form

Note that NF(f | G) may depend on the sorting of the elements of G. The
function reduce computes a normal form.

ring A = 0,(x,y,z),dp; //a global ordering
poly f = x2yz+xy2z+y2z+z3+xy;
poly f1 = xy+y2-1;
poly f2 = xy;
ideal G = f1,f2;
ideal S = std(G); //a standard basis of <G>
S;
//-> S[1]=x
//-> S[2]=y2-1

reduce(f,G);
//** G is no standardbasis
//-> y2z+z3 //NF w.r.t. a non-standard

//basis

35

G=f2,f1;
reduce(f,G);
//** G is no standardbasis
//-> y2z+z3-y2+1 //NF for a different numbering

//in G
reduce(f,S,1); //NFBuchberger
//-> z3+xy+z

reduce(f,S); //redNFBuchberger
//-> z3+z

3.8 Ideal membership

(1) Check inclusion of a polynomial in an ideal:

ring A = 0,(x,y),dp;
ideal I = x10+x9y2,y8-x2y7;
ideal sI = std(I);
poly f = x2y7+y14;
reduce(f,sI,1); //NFBuchberger, 3rd parameter avoids

//tail reduction
//-> -xy12+x2y7 //f is not in I
NF(f,sI,1);
//-> -xy12+x2y7 //f is not in I
f = xy13+y12;
reduce(f,sI,1);
//-> 0 //f is in I

(2) Check inclusion and equality of ideals:

ideal K = f,x2y7+y14;
reduce(K,sI,1); //normal form for

//each generator of K
//-> _[1]=0 _[2]=-xy12+x2y7 //K is not in I

K=f,y14+xy12;
size(reduce(K,sI,1)); //result is 0 iff K is in I
//-> 0

3.9 Linear combination of ideal members

Now assume that f ∈ I = 〈f1, . . . , fk〉. Then there exist a1, . . . , ak ∈ K[x] such
that

f = a1f1 + · · ·+ akfk.

The computation of the ai is illustrated in the following example.
We exemplify the Singular commands lift and division:

36

ring A = 0,(x,y),dp;
ideal I = x10+x9y2,y8-x2y7;
poly f = xy13+y12;
matrix M=lift(I,f); //f=M[1,1]*I[1]+...+M[r,1]*I[r]
M;
//-> M[1,1]=y7
//-> M[2,1]=x7y2+x8+x5y3+x6y+x3y4+x4y2+xy5+x2y3+y4

Hence, f can be expressed as a linear combination of I[1] and I[2] using M :

f-M[1,1]*I[1]-M[2,1]*I[2]; //test
//-> 0

3.10 Elimination of variables

ring A =0,(t,x,y,z),dp;
ideal I=t2+x2+y2+z2,t2+2x2-xy-z2,t+y3-z3;

eliminate(I,t);
//-> _[1]=x2-xy-y2-2z2 _[2]=y6-2y3z3+z6+2x2-xy-z2

LIB "elim.lib"; //loads library for elim1
elim1(I,t);
//-> _[1]=x2-xy-y2-2z2 _[2]=y6-2y3z3+z6+2x2-xy-z2

Alternatively choose a product ordering:

ring A1=0,(t,x,y,z),(dp(1),dp(3));
ideal I=imap(A,I);
ideal J=std(I);
J;
//-> J[1]=x2-xy-y2-2z2 J[2]=y6-2y3z3+z6+2x2-xy-z2
//-> J[3]=t+y3-z3

3.11 Computing with radicals

(1) Compute the radical of an ideal:

ring R = 0,(x,y,z),dp;
poly p = z4+2z2+1;
LIB "primdec.lib"; //loads library for radical

radical(p); //squarefree part of p
//-> _[1]=z2+1

ideal I = xyz, x2, y4+y5; //a more complicated ideal
radical(I);
//-> _[1]=x
//-> _[2]=y2+y //we see that I is not reduced

37

(2) Compute the index of nilpotency :

Since y2+ y is contained in the radical of I, some power of y2+ y must
be contained in I. We compute the minimal power k so that (y2+ y)k

is contained in I by using the normal form. This is the same as saying
that y2+ y is nilpotent in the quotient ring R/I and then k is the index
of nilpotency of y2+ y in R/I.

ideal gI = groebner(I);
int k;
while (reduce((y2+y)^k,gI) != 0) {k++;}
k;
//-> 4 //minimal power (index of nilpotency) is 4

3.12 Intersection of ideals

We use elimination to compute the intersection of two ideals:
Given f1, . . . , fk, h1, . . . , hr ∈ K[x] and > a monomial ordering.
Let I1 = 〈f1, . . . , fk〉K[x] and I2 = 〈h1, . . . , hr〉K[x]. We wish to find generators
for I1 ∩ I2.

Consider the ideal J := 〈tf1, . . . , tfk, (1− t)h1, . . . , (1− t)hr〉(K[x])[t].
With the above notations we get I1∩I2 = J∩K[x], i.e. we obtain the intersection
by eliminating t from J .

ring A=0,(x,y,z),dp;
ideal I1=x,y;
ideal I2=y2,z;
intersect(I1,I2); //the built-in SINGULAR command
//-> _[1]=y2 _[2]=yz _[3]=xz

ring B=0,(t,x,y,z),dp; //the way described above
ideal I1=imap(A,I1);
ideal I2=imap(A,I2);
ideal J=t*I1+(1-t)*I2;
eliminate(J,t);
//-> _[1]=yz _[2]=xz _[3]=y2

ideal I3 = x;
ideal I4 = y;
intersect(I3,I4);
//-> _[1]=xy

3.13 Quotient of ideals

Let I1 and I2 ⊂ K[x]. We want to compute

I1 : I2 = {g ∈ K[x] | gI2 ⊂ I1} .

Therefore the procedure quotient is implemented in Singular.

38

ring A=0,(x,y,z),dp;
ideal I1=x,y;
ideal I2=y2,z;
quotient(I1,I2); //the built-in SINGULAR command
//-> _[1]=y _[2]=x

ideal I3 = xz,yz;
ideal I4 = x,y;
quotient(I3,I4);
//-> _[1]=z

3.14 Matrix operations

A matrix in Singular is a matrix with polynomial entries, hence they can
be defined only when a basering is active. This applies also to matrices with
numbers as entries. A matrix is filled with entries from left to right, row by
row, spaces are allowed.

ring A = 0,(x,y,z),dp;
matrix M[2][3] = 1, x+y, z2, //2x3 matrix

x, 0, xyz;
matrix N[3][3] = 1,2,3,4,5,6,7,8,9; //3x3 matrix

M; //lists all entries of M
//-> M[1,1]=1
//-> M[1,2]=x+y
//-> M[1,3]=z2
//-> M[2,1]=x
//-> M[2,2]=0
//-> M[2,3]=xyz

print(N); //displays N as usual
//-> 1,2,3, //if the entries are small
//-> 4,5,6,
//-> 7,8,9

print(M+M); //addition of matrices
//-> 2, 2x+2y,2z2,
//-> 2x,0, 2xyz

print(x*N);
//-> x, 2x,3x, //scalar multiplication
//-> 4x,5x,6x,
//-> 7x,8x,9x

print(M*N); //multiplication of matrices
//-> 7z2+4x+4y+1,8z2+5x+5y+2,9z2+6x+6y+3,
//-> 7xyz+x, 8xyz+2x, 9xyz+3x

39

ideal I = minor(M,2); //ideal of all 2x2 minors (sub-
//determinants) of M

I;
//-> I[1]=x2yz+xy2z
//-> I[2]=xyz-xz2
//-> I[3]=-x2-xy
minor(N,2); //2x2 minors of N
//-> _[1]=-3
//-> _[2]=-6
//-> _[3]=-6
//-> _[4]=-12
//-> _[5]=3
//-> _[6]=6
//-> _[7]=-3
//-> _[8]=-6
//-> _[9]=3

M[2,3]; //access to single entry
//-> xyz
M[2,3]=37; //change single entry
print(M);
//-> 1,x+y,z2,
//-> x,0, 37

Further matrix operations are contained in the library matrix.lib. There is a
procedure pmat in inout.lib which formats matrices similarly to print, but
allows additional parameters, for example to show only the first terms of each
entry for big matrices.

LIB "matrix.lib";
LIB "inout.lib";

print(power(N,3)); //exponentiation of matrices
//-> 468, 576, 684,
//-> 1062,1305,1548
//-> 1656,2034,2412

pmat(power((x+y+z)*N,3),15); //show first 15 terms of entries
//where a truncation of a column
//is indicated by two dots

//-> 468x3+1404x2y.., 576x3+1728x2y.., 684x3+2052x2y..,
//-> 1062x3+3186x2.., 1305x3+3915x2.., 1548x3+4644x2..,
//-> 1656x3+4968x2.., 2034x3+6102x2.., 2412x3+7236x2..

matrix K = concat(M,N); //concatenation
print(K);
//-> 1,x+y,z2,1,2,3,
//-> x,0, 37,4,5,6,
//-> 0,0, 0, 7,8,9

40

ideal(M); //converts matrix to ideal
//-> _[1]=1 //same as ‘flatten’ from matrix.lib
//-> _[2]=x+y
//-> _[3]=z2
//-> _[4]=x
//-> _[5]=0
//-> _[6]=37

print(unitmat(5)); //5x5 unit matrix
//-> 1,0,0,0,0,
//-> 0,1,0,0,0,
//-> 0,0,1,0,0,
//-> 0,0,0,1,0,
//-> 0,0,0,0,1,

Besides matrices, there are integer matrices which do not need a ring. These
are mainly used for bookkeeping or storing integer results. The operations are
the same as for matrices.

intmat IM[2][3]=1,2,3,4,5,6;
IM;
//-> 1,2,3,
//-> 4,5,6
print(IM);
//-> 1 2 3
//-> 4 5 6

3.15 Langrange multipliers

3.15.1 Theoretical introduction

In many optimization problems we do not only ask for the extremum of a func-
tion, but for the extremum under additional conditions.
Lets consider the following problem: Given a function f : U −→ R and functions
ϕ1, . . . , ϕk : U −→ R defined on a set U ⊂ Rn. Let M be the zero-set of
ϕ = (ϕ1, . . . , ϕk) : U −→ Rk:

M = {x ∈ U | ϕ(x) = 0}.

We are interested in local extrema x0 of f on M , i.e.

f(x) ≤ f(x0) ∀x ∈M, or
f(x) ≥ f(x0) ∀x ∈M.

Such points are called Maxima resp. Minima of f on M or Maxima resp.
Minima of f under the additional condition ϕ = 0. The following theorem
states a necessary condition for extrema of f on M , if M is a manifold.

Theorem 3.15.1 (Lagrange). Let f : U −→ R be differentiable and ϕ =
(ϕ1, . . . , ϕk) : U −→ R be continuously differentiable on an open set U ⊂ Rn.
Furthermore let the Jacobian matrix of ϕ have rank k at any point x of the
zero-set M of ϕ, i.e.

rk(J(ϕ)(x)) = k ∀ x ∈M = {x ∈ U | ϕ(x) = 0}.

41

Then it holds:
If x0 ∈ M is an extremum of f , then ∇f(x0) is a linear combination of
∇ϕ1(x0), . . . ,∇ϕk(x0), i.e. there exist λ1, . . . , λk ∈ R satisfying

∇f(x0) =
k∑
i=1

λi∇ϕi(x0).

The numbers λ1, . . . , λk are called Lagrange Multipliers.

Proof. For the proof we refer to [KOE].

3.15.2 Application to Singular

Let Q[x] = Q[x1, . . . , xn] be the polynomial ring in n variables over the field
Q and consider an ideal G = 〈g1, . . . , gk〉 ⊂ Q[x1, . . . , xn] and a polynomial
f ∈ Q[x1, . . . , xn].
We want to compute local extrema of the map f |M : M −→ Q where M is a
manifold given by

M := V (G) := V (g1, . . . , gk) = {x ∈ Qn | g1(x) = . . . = gk(x) = 0} ⊂ Qn,

i.e. M denotes the set of solutions of the polynomial system

g1(x1, . . . , xn) = 0
...

...
...

gk(x1, . . . , xn) = 0

and is called the (affine algebraic) variety of g1, . . . , gk, respectively of G.

Definition 3.15.2. An affine algebraic variety M = V (g1, . . . , gk) is called an
algebraic manifold if the Jacobian matrix

J(g1, . . . , gk)(p) =


∂g1
∂x1

(p) . . . ∂g1
∂xn

(p)
...

...
∂gk

∂x1
(p) . . . ∂gk

∂xn
(p)


has maximal rank at all p ∈M .

In terms of our assumptions and Definition 3.15.2, Theorem 3.15.1 concerning
the Lagrange Multipliers can be reformulated as follows:

Theorem 3.15.3. Let f, g1, . . . , gk ∈ Q[x1, . . . , xn], M = V (g1, . . . , gk) be an
algebraic manifold and consider the Lagrange polynomial

F (x, λ) := f(x) +
k∑
i=1

λi · gi(x)

with x = (x1, . . . , xn) ∈ Qn and λ = (λ1, . . . , λk) ∈ Qk.

42

Then, if p ∈ M is a local extremum of f |M there exists λ = (λ1, . . . , λk) ∈ Qk

such that the system of polynomial equations

∇F (x, λ) = 0 ⇐⇒ ∇xF (x, λ) = 0
∇λF (x, λ) = 0 (3.1)

⇐⇒



∂f
∂x1

(x) +
∑k
i=1 λi

∂gi

∂x1
(x) = 0
...

...
...

∂f
∂xn

(x) +
∑k
i=1 λi

∂gi

∂xn
(x) = 0

g1(x) = 0
...

...
...

gk(x) = 0


(3.2)

has the solution (p, λ) ∈M ×Qk.

In order to compute the local extrema of f |M : M −→ Q we can therefore
proceed in the following way:

• Eliminate λ1, . . . , λk from the system of polynomial equations (3.2).

• Get a system of equations h1(x) = . . . = hr(x) = 0 satisfying

h1(p) = . . . = hr(p) = 0 ⇐⇒ ∃ λ such that (3.2) holds
⇐= f |M has a local extremum at p ∈M

SINGULAR Example 3.15.4. Compute the critical points of f(x, y) = x2 +
y2 ∈ Q[x, y] under the additional condition g(x, y) = 0 where g(x, y) = y− 2x+
1 ∈ Q[x, y]:

ring R = 0,(x,y),dp;
poly f = x2+y2;
ideal G = y-2x+1;
matrix jG = jacob(G);
jG;
//-> jG[1,1]=-2
//-> jG[1,2]=1
ideal M = minor(jG,1);
M;
//-> M[1]=1
//-> M[2]=-2
ideal I = M+G;
I;
//-> I[1]=1

LIB "ring.lib";
def r = extendring(1,"l","dp");
setring r;
poly f = imap(R,f);
ideal G = imap(R,G);
poly F = f+l*G[1];

43

F;
//-> -2lx+ly+l+x2+y2
ideal J = jacob(F);
J;
//-> J[1]=-2x+y+1
//-> J[2]=-2l+2x
//-> J[3]=l+2y
ideal crit = eliminate(J,l);
crit;
//-> crit[1]=5y+1
//-> crit[2]=2x-y-1

LIB "solve.lib";
setring R;
ideal crit = imap(r,crit);
solve(crit);
//-> [1]:
//-> [1]:
//-> 0.4
//-> [2]:
//-> -0.2

SINGULAR Example 3.15.5. Check whether V (g) with g(x, y) = y2−x3−
x2 ∈ Q[x, y] is an algebraic manifold:

ring R = 0,(x,y),dp;
ideal G = y2-x3-x2;
matrix jG = jacob(G);
jG;
//-> jG[1,1]=-3x2-2x
//-> jG[1,2]=2y
ideal I = jG + G;
I;
//-> I[1]=2y
//-> I[2]=-3x2-2x
//-> I[3]=-x3-x2+y2
std(I);
//-> _[1]=y
//-> _[2]=x

LIB "solve.lib";
solve(I);
//-> [1]:
//-> [1]:
//-> 0
//-> [2]:
//-> 0

Hence, V (g) is not an algebraic manifold since (0, 0) ∈ V (g) is a singular point
of g.

44

SINGULAR Example 3.15.6. Compute the critical points of f(x, y) = x+
y ∈ Q[x, y] under the additional condition g(x, y) = 0 where g(x, y) = 1

4x
2 +

1
16y

2 − 1 ∈ Q[x, y]:

ring R = 0,(x,y),dp;
poly f = x+y;
ideal G = 1/4*x2+1/16*y2-1;
matrix jG = jacob(G);
jG;
//-> jG[1,1]=1/2x
//-> jG[1,2]=1/8y
ideal I = jG+G; // jG = minor(jG,1)
I;
//-> I[1]=1/2x
//-> I[2]=1/8y
//-> I[3]=1/4x2+1/16y2-1
std(I);
//-> _[1]=1
LIB "ring.lib";
def r = extendring(1,"l","dp");
setring r;
poly f = imap(R,f);
ideal G = imap(R,G);
poly F = f+l*G[1];
F;
//-> 1/4lx2+1/16ly2-l+x+y
ideal J = jacob(F);
J;
//-> J[1]=1/4x2+1/16y2-1
//-> J[2]=1/2lx+1
//-> J[3]=1/8ly+1
ideal crit = eliminate(J,l);
crit;
//-> crit[1]=4x-y
//-> crit[2]=5y2-64
LIB "solve.lib";
setring R;
ideal crit = imap(r,crit);
solve(crit);
//-> [1]:
//-> [1]:
//-> -0.89442719
//-> [2]:
//-> -3.57770876
//-> [2]:
//-> [1]:
//-> 0.89442719
//-> [2]:
//-> 3.57770876

45

3.15.3 Singular-Exercise

Consider an ideal G = 〈g1, . . . , gk〉 ⊂ Q[x] = Q[x1, . . . , xn] and a polynomial
f ∈ Q[x] = Q[x1, . . . , xn].

(1) Write a procedure which returns the Lagrange polynomial F (x, λ) =
f(x) +

∑k
i=1 λi · gi(x).

(2) How could you test with Singular if the Jacobian matrix of (g1, . . . , gk)
has maximal rank on the zero-set of (g1, . . . , gk)?

(3) Write a procedure which returns the ideal of all critical points for the given
data, if feasible.

3.15.4 Solution

(1) Here is just an example procedure to solve the given problem in Singular:

LIB "ring.lib"; // necessary for procedure "extendring"
proc lagPoly(poly f, ideal G)
"USAGE: lagPoly(f,G);
RETURN: extended ring R with the variables

(x(1),...,x(n),l(1),...,l(k)) comes with the Lagrange
polynomial F(x,l)=f(x)+l(1)*g1(x)+...+l(k)*gk(x)
where G=<g1,...,gk>

NOTE: F is the Lagrange polynomial, whose partial deriviates
are the Lagrange conditions;
f is the function to maximize, G is the ideal defining
the variety of points for which f is defined

"
{
def S = basering;
int nvar = size(G);
def R = extendring(nvar, "l(", "dp");
setring R;
poly f = imap(S, f);
poly F = f;
ideal G = imap(S, G);
for (int i = 1; i <= nvar; i++)
{
F = F + var(i) * G[i];

}
export(f);
export(F);
export(G);
return(R);

}

(2) To observe if the Jacobian matrix J(g1, . . . , gk) ∈ Mat(k × n,Q[x]) has
full rank one can check whether there exists a

(
n− dim(G)

)
-minor1 that

does not vanish.
1By a k-minor we denote a determinant of a k × k-submatrix of A ∈ Mat(n×m, K).

46

Now consider (g1, . . . , gk) ∈ Q[x]k, the matrix J(g1, . . . , gk) ∈ Mat(k ×
n,Q[x]) and let

M = {mi | mi is a
(
n− dim(G)

)
-minor of J(g1, . . . , gk)} ⊂ Q[x].

Our aim is to obtain if

∀ p ∈ V (g1, . . . , gk) : ∃ i : mi(p) 6= 0.

Therefore we define the ideal I = 〈M, g1, . . . , gk〉 ⊂ Q[x] and check if

V (I) = ∅ ⇐⇒ 1 ∈ G = {h1, . . . , hl} ⊂ I
where G is a Gröbner basis of I.

A possible realization for this in Singular is the following procedure:

proc lagTest(ideal G)
"USAGE: lagTest(G);
RETURN: 1, if the Jacobian matrix of G has maximal rank

on V(G);
-1, if the Jacobian matrix of G does not have

maximal rank on V(G)
NOTE: V(G) describes the variety/zero-set of the ideal

G=<g1,...,gk>
"
{
matrix jG = jacob(G);
ideal M = minor(jG,nvars(basering)-dim(std(G)));
ideal I = M + G;
if(reduce(poly(1),std(I))==0)
{
return(1);

}
else
{
return(-1);

}
}

(3) Since it is our aim to find all critical points of f ∈ Q[x] = Q[x1, . . . , xn]
under the additional condition g1 = . . . = gk = 0 we proceed as described
in section 3.15.2. A possible realization in Singular serves the following
procedure:

proc critIdeal(poly f, ideal G)
"USAGE: critIdeal(f,G);
RETURN: -1, if the Jacobian matrix of G does not have maximal

rank on V(G) and else the ideal of all critical
points p of f under the additional condition
g1(p)=...=gk(p)=0

"

47

{
if(lagTest(G)==-1)
{
print("Attention: V(G) is no algebraic manifold!!");
return(-1);

}
def S = basering;
def R = lagPoly(f,G);
setring R;
poly L = 1;
for (int i = 1; i <= nvars(R) - nvars(S); i++)
{
L = L * var(i);

}
ideal crit = eliminate(jacob(F), L);
setring S;
ideal crit = imap(R, crit);
return(crit);

}

SINGULAR Example 3.15.7. Compute the critical points of f(x, y, z) =
2x + 4y − 5z ∈ Q[x, y, z] under the additional condition g(x, y, z) =
(g1(x, y, z), g2(x, y, z)) = (0, 0) where (g1(x, y, z), g2(x, y, z)) = (x2 + y2 + z2 −
16,−x− 2y + z) ∈ Q[x, y, z]2:

ring R = 0,(x,y,z),dp;
poly f = 2x+4y-5z;
poly g1 = x2+y2+z2-16;
poly g2 = -x-2y+z;
ideal G = g1,g2;
ideal I = critIdeal(f,G);
I;
//-> I[1]=5y-2z
//-> I[2]=x+2y-z
//-> I[3]=3z2-40
solve(I);
//-> [1]:
//-> [1]:
//-> -0.73029674
//-> [2]:
//-> -1.46059349
//-> [3]:
//-> -3.65148372
//-> [2]:
//-> [1]:
//-> 0.73029674
//-> [2]:
//-> 1.46059349
//-> [3]:
//-> 3.65148372

48

References

[GP] G.-M. Greuel, G. Pfister, A Singular Introduction to Commutative
Algebra, 2nd edition, Springer-Verlag, Berlin, 2007.

[GPS1] G.-M. Greuel, G. Pfister and H. Schönemann, Singular online manual.

[GPS2] G.-M. Greuel, G. Pfister and H. Schönemann, Singular 3-0-4 (2007),
http://www.singular.uni-kl.de.

[DL] W. Decker, C. Lossen, Computing in Algebraic Geometry, Springer-
Verlag, Berlin, 2006.

[KOE] K. Königsberger, Analysis 2, 2. erweiterte Auflage, Springer-Verlag,
Berlin, 1997.

[MAR] T. Markwig, A Short Introduction to Singular, Lecture Notes, 2003.

Fachbereich Mathematik, Universität Kaiserslautern, Erwin-
Schrödinger-Straße, D – 67663 Kaiserslautern
E–mail address: steidel@mathematik.uni-kl.de

singular@mathematik.uni-kl.de to reach the Singular team

49

