Back to Forum | View unanswered posts | View active topics
Topic review - parametrization with respect to given variables |
Author |
Message |
|
|
Post subject: |
Re: parametrization with respect to given variables |
|
|
For this example primdecGTZ is too expensive, however, minAssGTZ works (here also triangMH or triangM seem to work too). For your purpose one has to declare h13,h123,h23,h12,c,h1,h2,h3 as parameters and s1,s12,s13 as variables: option(prot); ring r = (0,h13,h123,h23,h12,c,h1,h2,h3),(s1,s12,s13),lp; ideal i = 12*h23*s1^2*s13^2+12*h13*s1^3*s13+2*h23*s12*s1^3-10*h23*s1^2*s13 ... +h3*s12*s13+h123*s12*s1+h123*s12*s13; list ma = minAssGTZ(i); //the minimal associated primes ma; [1]: _[1]=s13 _[2]=s1 [2]: _[1]=(-2*c^2)*s13+(h13^2+h13*h123+2*h13*h23+h13*h1+h13*h2+h13*h3+h123*h23+h123*h1+h123*h2+h23^2+h23*h1+h23*h2+h23*h3+h1*h3+h2*h3) _[2]=(-h13*c^2-h123*c^2-h23*c^2+c^3-c^2*h1-c^2*h2-c^2*h3)*s12+(-h13^2*h12-h13*h123*h12-2*h13*h23*h12+2*h13*h12*c-h13*h12*h1-h13*h12*h2-h13*h12*h3-h123*h23*h12 +h123*h12*c-h123*h12*h1-h123*h12*h2-h23^2*h12+2*h23*h12*c-h23*h12*h1-h23*h12*h2-h23*h12*h3-h12*c^2+h12*c*h1+h12*c*h2+h12*c*h3-h12*h1*h3-h12*h2*h3) _[3]=(-2*c^2)*s1+(-h13^2-h13*h123-2*h13*h23+h13*c-h13*h1-h13*h2-h13*h3-h123*h23-h123*h1-h123*h2-h23^2+h23*c-h23*h1-h23*h2-h23*h3+c*h1+c*h2-h1*h3-h2*h3) [3]: _[1]=s12 _[2]=2*s1+2*s13-1 [4]: _[1]=s12 _[2]=s1 //Or, if you wish to normalize the second solution, then you get the expression for //s13,s12 and s1 directly (of course, you get the solutions by setting the //polynomials 0): normalize(ma[2]); _[1]=s13+(-h13^2-h13*h123-2*h13*h23-h13*h1-h13*h2-h13*h3-h123*h23-h123*h1-h123*h2-h23^2-h23*h1-h23*h2-h23*h3-h1*h3-h2*h3)/(2*c^2) _[2]=s12+(h13^2*h12+h13*h123*h12+2*h13*h23*h12-2*h13*h12*c+h13*h12*h1+h13*h12*h2+h13*h12*h3+h123*h23*h12-h123*h12*c+h123*h12*h1+h123*h12*h2+h23^2*h12-2*h23*h12*c +h23*h12*h1+h23*h12*h2+h23*h12*h3+h12*c^2-h12*c*h1-h12*c*h2-h12*c*h3+h12*h1*h3+h12*h2*h3)/(h13*c^2+h123*c^2+h23*c^2-c^3+c^2*h1+c^2*h2+c^2*h3) _[3]=s1+(h13^2+h13*h123+2*h13*h23-h13*c+h13*h1+h13*h2+h13*h3+h123*h23+h123*h1+h123*h2+h23^2-h23*c+h23*h1+h23*h2+h23*h3-c*h1-c*h2+h1*h3+h2*h3)/(2*c^2) email: [email protected]Posted in old Singular Forum on: 2002-02-03 10:10:53+01
For this example primdecGTZ is too expensive, however, minAssGTZ works (here also triangMH or triangM seem to work too). For your purpose one has to declare h13,h123,h23,h12,c,h1,h2,h3 as parameters and s1,s12,s13 as variables: option(prot); ring r = (0,h13,h123,h23,h12,c,h1,h2,h3),(s1,s12,s13),lp; ideal i = 12*h23*s1^2*s13^2+12*h13*s1^3*s13+2*h23*s12*s1^3-10*h23*s1^2*s13 ... +h3*s12*s13+h123*s12*s1+h123*s12*s13; list ma = minAssGTZ(i); //the minimal associated primes ma; [1]: _[1]=s13 _[2]=s1 [2]: _[1]=(-2*c^2)*s13+(h13^2+h13*h123+2*h13*h23+h13*h1+h13*h2+h13*h3+h123*h23+h123*h1+h123*h2+h23^2+h23*h1+h23*h2+h23*h3+h1*h3+h2*h3) _[2]=(-h13*c^2-h123*c^2-h23*c^2+c^3-c^2*h1-c^2*h2-c^2*h3)*s12+(-h13^2*h12-h13*h123*h12-2*h13*h23*h12+2*h13*h12*c-h13*h12*h1-h13*h12*h2-h13*h12*h3-h123*h23*h12 +h123*h12*c-h123*h12*h1-h123*h12*h2-h23^2*h12+2*h23*h12*c-h23*h12*h1-h23*h12*h2-h23*h12*h3-h12*c^2+h12*c*h1+h12*c*h2+h12*c*h3-h12*h1*h3-h12*h2*h3) _[3]=(-2*c^2)*s1+(-h13^2-h13*h123-2*h13*h23+h13*c-h13*h1-h13*h2-h13*h3-h123*h23-h123*h1-h123*h2-h23^2+h23*c-h23*h1-h23*h2-h23*h3+c*h1+c*h2-h1*h3-h2*h3) [3]: _[1]=s12 _[2]=2*s1+2*s13-1 [4]: _[1]=s12 _[2]=s1 //Or, if you wish to normalize the second solution, then you get the expression for //s13,s12 and s1 directly (of course, you get the solutions by setting the //polynomials 0): normalize(ma[2]); _[1]=s13+(-h13^2-h13*h123-2*h13*h23-h13*h1-h13*h2-h13*h3-h123*h23-h123*h1-h123*h2-h23^2-h23*h1-h23*h2-h23*h3-h1*h3-h2*h3)/(2*c^2) _[2]=s12+(h13^2*h12+h13*h123*h12+2*h13*h23*h12-2*h13*h12*c+h13*h12*h1+h13*h12*h2+h13*h12*h3+h123*h23*h12-h123*h12*c+h123*h12*h1+h123*h12*h2+h23^2*h12-2*h23*h12*c +h23*h12*h1+h23*h12*h2+h23*h12*h3+h12*c^2-h12*c*h1-h12*c*h2-h12*c*h3+h12*h1*h3+h12*h2*h3)/(h13*c^2+h123*c^2+h23*c^2-c^3+c^2*h1+c^2*h2+c^2*h3) _[3]=s1+(h13^2+h13*h123+2*h13*h23-h13*c+h13*h1+h13*h2+h13*h3+h123*h23+h123*h1+h123*h2+h23^2-h23*c+h23*h1+h23*h2+h23*h3-c*h1-c*h2+h1*h3+h2*h3)/(2*c^2) email: [email protected]Posted in old Singular Forum on: 2002-02-03 10:10:53+01
|
|
|
|
Posted: Thu Aug 11, 2005 5:42 pm |
|
|
|
|
|
Post subject: |
parametrization with respect to given variables |
|
|
I have 3 polynomials with the variables {s13, h13, h123, h23, s12, h12, c, h1, h2, h3, s1}. Please see if you can express from this the variables {s1,s12, s13} in terms of the others. email: [email protected]Posted in old Singular Forum on: 2002-02-03 10:08:32+01
I have 3 polynomials with the variables {s13, h13, h123, h23, s12, h12, c, h1, h2, h3, s1}. Please see if you can express from this the variables {s1,s12, s13} in terms of the others. email: [email protected]Posted in old Singular Forum on: 2002-02-03 10:08:32+01
|
|
|
|
Posted: Thu Aug 11, 2005 5:31 pm |
|
|
|
|
|
It is currently Fri May 13, 2022 10:57 am
|
|