Post new topic Reply to topic  [ 2 posts ] 
Author Message
 Post subject: Possible bug in Betti diagram
PostPosted: Fri Sep 22, 2017 3:26 pm 
We know that if $I$ is a graded ideal in a polynomial ring, then the graded Betti numbers of $I$ are at most the corresponding graded Betti numbers of the initial ideal of $I$ with respect to any monomial order (See Corollary 3.3.3 of the book by Herzog and Hibi).

The following code in Singular says differently. Where is my mistake?
Code:

>  ring r = 0, (x, y,z, u,v, w, a, b, c, d), Dp;
> ideal P = zw+u2+uv, ya+zu+uv, xb+y2+yz+zu, uvcd+wac+wb2, zvcd-uac-ub2-vac-vb2;

> P;
P[1]=zw+u2+uv
P[2]=ya+zu+uv
P[3]=xb+y2+yz+zu
P[4]=uvcd+wac+wb2
P[5]=zvcd-uac-ub2-vac-vb2
> P = std(P);
> ideal P' = lead(P);
> P';
P'[1]=zw
P'[2]=ya
P'[3]=xb
P'[4]=uvcd
P'[5]=zvcd
> resolution R = mres(P, 0);
> resolution R' = mres(P', 0);
> print(betti(R), "betti");
           0     1     2     3     4
------------------------------------
    0:     1     -     -     -     -
    1:     -     3     -     -     -
    2:     -     -     4     -     -
    3:     -     2     1      3     -
    4:     -     -     4      2     1
    5:     -     -     -       2     1
------------------------------------
total:     1     5     9     7     2

> print(betti(R'), "betti");
           0     1     2     3     4
------------------------------------
    0:     1     -     -     -     -
    1:     -     3     -     -     -
    2:     -     -     3     -     -
    3:     -     2     2     1     -
    4:     -     -     4     4     -
    5:     -     -     -      2     2
------------------------------------
total:     1     5     9     7     2



Report this post
Top
  
Reply with quote  
 Post subject: Re: Possible bug in Betti diagram
PostPosted: Sat Sep 23, 2017 1:09 pm 

Joined: Wed May 25, 2005 4:16 pm
Posts: 275
Your ideal is nor homogeneous,
see
https://www.singular.uni-kl.de:8002/trac/ticket/810#comment:1


Report this post
Top
 Profile  
Reply with quote  
Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 2 posts ] 

You can post new topics in this forum
You can reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

It is currently Fri May 13, 2022 10:59 am
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group