SINGULAR Quick Reference

SINGULAR Version 3-0

Do not forget to terminate all commands with a ; (semicolon)!

In particular if SINGULAR prints the continuation prompt . (period)
instead of the regular command prompt >, then it waits for a com-
mand to be terminated by a ;. If that does not help, try one or more
" or } to close an opened string or block.

Comments start with // and extend to end of line.

Some of the topics concerning interactive use are system dependent.

Starting SINGULAR

Singular start SINGULAR

Singular file . read files and prompt for further commands
Singular --help print help on command line options and exit

Stopping SINGULAR

quit; exit SINGULAR; also exit; or $
C-c interrupt SINGULAR

Getting help

help; enter online help system

help topic; describe topic; also 7 topic;
Inside the info help system:

C-h get help on help system

q exit from help system

n/p/u go to next/previous/upper node
m pick menu item by name

1 go to last visited node/exit from help on help
SPC/DEL scroll forward/backward one page

Commandline editing
Commandline editing is similar to that of, e.g., bash or tcsh:

BS/C-d remove character on the left /right of cursor
C-p/C-n get previous/next line from history
C-b/C-f move cursor left/right

C-a/C-e go to beginning/end of line

C-u/C-k delete to beginning/end of line

Names and objects
Names (= identifiers) have to be declared before they are used:

type name [= expression];
declare variable name
kill(name) delete variable name

Names of type number, poly, ideal, vector, module, matrix, map,
and resolution may be declared only inside a ring. They are local
to that ring. The same holds for a list if it contains an object of the
above types. All other types may be declared at any time. They are
globally visible.
Names may consist of alphanumeric characters including _ (under-
score) and have to start with a letter. Capital and small letters are
distinguished. Names may be followed by an integer expression in
parentheses, resulting in so-called indezed names.
name(n..m) shortcut for name(n), ..., name(m)

(e.g. ring r =0, x(1..3), dp;)
_ (underscore) refers to the value of the last expression printed

(©1998-2005 Permissions on back

Ring declaration

ring name = basefield, (ringvars), ordering;
declare ring name and make it the new basering.
ringvars has to be a list of names, the other items
are described below. Example:
ring r = 32003, (x, y, z), dp;

qring name = ideal;
declare quotient ring name of the current basering
with respect to ideal. ideal has to be a standard
basis. Make name the new basering.

Examples of available basefields:

0 the rational numbers

P the finite field Z, with p elements,

2 < p < 2147483629 a prime

the finite field with p™ elements, p a prime and
4 < p™ < 32671. The name gen refers to some
generator of the cyclic group of unities.

(p~n, gen)

(p, alpha) algebraic extension of Q or Z, (p = 0 or as above)
by alpha. The minpoly paiphe for alpha has to be
specified with an assignment to minpoly (e.g. min-
poly=a~2+1;, for alpha = a). alpha has to be a
name.

transcendental extension of Q or Z, (p = 0 or as
above) by t;. The t; have to be names.

(p, t1,

real,len the real numbers represented by long floating point
numbers of lengthlen

Term orderings

An ordering as referred to in the ring declaration may either be a
global, local, or matrix ordering or a list of these resulting in a pro-
duct ordering. The list may include extra weight vectors and may be
preceded or followed by a module ordering specification.

Global orderings

1p lexicographical ordering

dp degree reverse lexicographical ordering
Dp degree lexicographical ordering

wp(wy , weighted reverse lexicographical ordering

Wp(wy, weighted lexicographical ordering
The w; have to be positive integers.

Local orderings

1s negative lexicographical ordering

ds negative degree reverse lexicographical ordering
Ds negative degree lexicographical ordering

ws(wi, ...) general weighted reverse lexicographical ordering

Ws(wy, ...) general weighted lexicographical ordering
w1 has to be a non-zero integer, every other w; may
be any integer
Matrix orderings
M(mi1, mi2s -..s Mnn)
m has to be an invertible matrix with integer coeffi-
cients. Coefficients have to be specified row-wise.

Product orderings

Abu:\awv_. Qm:\am:. cees Os—n\aﬁv_v
the o; have to be any of the above orderings. lp,
dp, Dp, 1s, ds, Ds may be followed by an integer
expression k; in parentheses specifying the number
of variables o; refers to (e.g. (1p(3), dp(2))).

Extra weight vector
a(wy, ...) any of the above degree orderings may be preceded
by an extra weight vector

Module orderings

(c, 01, ...) sort by components first

(015 ...s C) sort by variables first
0; may be any of the above orderings or an extra
weight vector, ¢ may be one of C or c:

C sort generators in ascending order (i.e. gen(i) <
gen(y) iff ¢ < j)

c sort generators in descending order

Data types

Examples of ring-independent types:

int i1 =101; int i2 = 13 div 3;

intvec iv = 13 div 3, -4, ii;

intmat im[2][2] = 13 div 3, -4, il;
a 2 x 2 matrix. Entries are filled row-wise, missing entries
are set to zero, extra entries are ignored. vector/matrix
elements are accessed using the [...] operator, where the
first element has index one (e.g. iv[3]; im[1, 2];).

string s1 = "a quote \" and a backslash \\";
string s2 = "con" + "catenation";
Basering in the following is ring r = 0, (x, y, z, mu, nu), dp;
number n = 5/3;
poly p(1) = 3/4x3yz4+2xy2;
poly p(2) = (5/3)*mu”2*nu”3+n*yz2;
p(1) equals 3/4z3yz* + 2zy>. Short format of monomials
is valid for one-character ring variables only.
ideal i = p(1..2), x+y;
note the use of indexed names

vector v = [p(1), p(2), x+yl;

vector w = 2*%p(1)*gen(6)+n*nu*gen(1);
vectors may be written in brackets ([...]) or expressed as
linear combinations of the canonical generators gen(s)

module mo = v, w, x+y*gen(1);

resolution r = sres(std(mo), 0);

matrix ma[2][2] =5/3, p(1), 101;
the rules for declaring, filling, and accessing integer
matrices apply to types matrix and vector, too

list 1 =iv, v, p(1..2), mo;
lists may collect objects of any type. They are ring-
dependent iff one of the entries is.

def d = read("MPfile:r example.mp");
a name of type def inherits the type of the object as-
signed first to it. Useful if the actual type of an object
is unknown.

Monitoring and debugging tools
timer =1; print time used for commands to execute
int t = timer; command; ...; timer-t;

print time used for commands to execute

memory (1) ; print number of bytes allocated from system
option(prot); show algorithm protocol

option(mem); show algorithm memory usage

TRACE = 1; print protocol on execution of procedures

listvar(all); list all (user-)defined names
listvar(ringname) ;
list all names belonging to ringname

Options
option(); show current option settings
option(option; , nooptiona, ...);

switch optioni on and options off, resp.
option(none); reset all options to default values
Type help option; for a list of all options.

Monitoring

debugLib show loading of procedures from libraries
mem show algorithm memory usage

prot show algorithm protocol

Standard bases

fastHC try to find highest corner as fast as possible
intStrategy avoid divisions

morePairs create additional pairs

notSugar disable sugar strategy

redSB compute reduced standard bases
redTail reduce tails

sugarCrit use sugar criteria

weightM automatically compute weights
Resolutions

minRes do additional minimizing
notRegularity disable regularity bound

Miscellany

returnSB let some functions return standard bases

System variables
Type help System variables; for a list of all system variables.

Standard bases

degBound stop if (weighted) total degree exceeds degBound
multBound stop if multiplicity gets smaller than multBound
noether cut off all monomials above monomial noether
Miscellany

basering current basering

minpoly minimal polynomial for algebraic extensions
short do not print monomials in short format if zero
timer on assignment of a non-zero value show time used

for execution of executed commands. On evaluation,
return system time in seconds used by SINGULAR
since start

TRACE print information on procedures being executed if
larger than one

Input and output
< "filename"; load and execute filename
write("filename", expression, ...)
write expressions to ASCII file filename
read("filename") ;
read ASCII file filename and return content as a
string. See also example below.
dump("MPfile: filename");
getdump ("MPfile: filename");
dump current state of SINGULAR to filename and
retrieve it, resp.

An example how to write one single expression (in this case the ideal
i) to a file and read it back from there:

write("i.save", i);

execute("ideal i=" + read("i.save") + ";");

Libraries

LIB "library"; load library

help library; show help on library
help all.lib; show list of all libraries

Mapping

map name = ringname, ideal;
declare a map name from ringname to current basering.
The i-th ring variable from ringname is mapped to the
i-th generator of ideal.

mapname (expression)
apply map mapname to expression

Coefficients between rings with different basefields are mapped in the
following way (non-canonical maps only):

Zpy > Q:[il, > i€ [—p/2,p/2] C Z

Zy — Zq:[tlp =1 €[—p/2,p/2] C Z,i — [i]q

fetch(ringname, name)
map from ring ringname to current basering. The rings
have to be identical up to names of ring variables
imap(ringname, name)
map from subring ringname to current basering
subst (ezpression, ringvar, monomial)
substitute ringvar by monomial in expression

Miscellany
setring(ringname)
make ringname the current basering

Data on polynomials
ord(poly | vector)
return (weighted) degree of initial term
deg(poly | vector)
return maximal (weighted) degree
size(ideal | module)
size(poly | vector)
size(string | intvec | list)
return (1) number of non-zero generators; (2) number of
monomials; (3) length
lead(expression)
return initial term(s)

Operations on polynomials

ged(poly, , poly,)
return greatest common divisor

factorize(poly[, int])
return irreducible factors. Return constant factor and
multiplicities in dependency on int.

Differentiation and jets

diff (expression, ringvar)

diff (ideali, ideals)
(1) return partial derivation by ringvar; (2) differentiate
each elt. of idealz by the differential operators correspon-
ding to the elements of idealy

jacob(poly | ideal)
return jacobi ideal or matrix, resp.

jet(expression, int[, intvec])
return int-jet of expression. Return weighted int-jet if
intvec is specifified.

Standard bases

groebner (ideal | module[, int])
compute a standard basis (SB) of ideal resp. module
using a heuristically chosen method. Delimit computation
time to int seconds.
std(ideal | module[, intvec])
compute a SB. Use first Hilbert series intvec (result from
hilb(..., 1)) for Hilbert-driven computation.
stdfglm(ideal[, string])
use FGLM algorithm to compute a SB from a SB w.r.t.
the “simpler” ordering string (defaults to dp)
stdhilb(ideal[, intvec])
use Hilbert-driven algorithm to compute a SB. If Hilbert
series intvec is not specified compute it first.
fglm(ringname, idealname)
use FGLM algorithm to transform SB idealname from
ring ringname to a SB w.r.t. the ordering of the current
basering
reduce(ezpression, ideal|module[, int])
reduce ezpression w.r.t. second argument which should be
a SB. Use lazy reduction if int equals one.

Computation of invariants
Most of the results are meaningful only if the input ideal or module is
represented by a standard basis.
degree (ideal | module)
display (Krull) dimension, codimension and multiplicity
dim(ideal | module)
return (Krull) dimension
hilb(ideal | module[, int])
display first and second Hilbert series with one argument.
Return int-th Hilber series otherwise (int = 1, 2).
mult (ideal | module)
return multiplicity
vdim(ideal | module)
return vector space dimension of current basering modulo
ideal or module, resp.

Resolutions
An integer argument length in the following descriptions specifies the
length of the resolution to compute. If length equals zero, the whole
resolution is computed.
res(ideal | module, length[, int])
compute a free resolution (FR) of ideal resp. module
using a heuristically chosen method. Compute a minimal
resolution if a third argument is given.
mres (ideal | module, length)
compute a minimal FR using the standard basis method
lres(ideal | module, length)
compute a FR using LaSacala’s method
sres(ideal | module, length)
compute a FR using Schreyer’s method
syz (ideal | module)
compute the first syzygy
minres (resolution | list)
minimize a free resolution
betty(resolution | list)
compute the graded Betti numbers of a module repre-
sented by a resolution

