Home Online Manual
Top
Back: normalI
Forward: sagbiSPoly
FastBack:
FastForward:
Up: Singular Manual
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.27 sagbi_lib

Library:
sagbi.lib
Purpose:
Compute SAGBI basis (subalgebra bases analogous to Groebner bases for ideals) of a subalgebra
Authors:
Jan Hackfeld, [email protected]
Gerhard Pfister, [email protected]
Viktor Levandovskyy, [email protected]

Overview:
SAGBI stands for 'subalgebra bases analogous to Groebner bases for ideals'. SAGBI bases provide important tools for working with finitely presented subalgebras of a polynomial ring. Note, that in contrast to Groebner bases, SAGBI bases may be infinite.

References:
Ana Bravo: Some Facts About Canonical Subalgebra Bases, MSRI Publications 51, p. 247-254

Procedures:

D.4.27.1 sagbiSPoly  computes SAGBI S-polynomials of A
D.4.27.2 sagbiReduce  performs subalgebra reduction of I by A
D.4.27.3 sagbi  computes SAGBI basis for A
D.4.27.4 sagbiPart  computes partial SAGBI basis for A
D.4.27.5 algebraicDependence  performs iterations of SAGBI for algebraic dependencies of I
See also: algebra_lib.