Home Online Manual
Top
Back: modfrWalk
Forward: setBaseMultigrading
FastBack:
FastForward:
Up: Singular Manual
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.15.11 multigrading_lib

Todos/Issues:

Library:
multigrading.lib
Purpose:
Multigraded Rings

Authors:
Benjamin Bechtold, [email protected]
Rene Birkner, [email protected]
Lars Kastner, [email protected]
Simon Keicher, [email protected]
Oleksandr Motsak, U@D, where U={motsak}, D={mathematik.uni-kl.de}
Anna-Lena Winz, [email protected]

Overview:
This library allows one to virtually add multigradings to Singular: grade multivariate polynomial rings with arbitrary (fin. gen. Abelian) groups. For more see http://code.google.com/p/convex-singular/wiki/Multigrading For theoretical references see:
E. Miller, B. Sturmfels: 'Combinatorial Commutative Algebra' and
M. Kreuzer, L. Robbiano: 'Computational Commutative Algebra'.

Note:
'multiDegBasis' relies on 4ti2 for computing Hilbert Bases. All groups are finitely generated Abelian

Procedures:

D.15.11.1 setBaseMultigrading  attach multiweights/grading group matrices to the basering
D.15.11.2 getVariableWeights  get matrix of multidegrees of vars attached to a ring
D.15.11.3 getGradingGroup  get grading group attached to a ring
D.15.11.4 getLattice  get grading group' lattice attached to a ring (or its NF)
D.15.11.5 createGroup  create a group generated by S, with relations L
D.15.11.6 createQuotientGroup  create a group generated by the unit matrix with relations L
D.15.11.7 createTorsionFreeGroup  create a group generated by S which is torsionfree
D.15.11.8 printGroup  print a group
D.15.11.9 isGroup  test whether G is a valid group
D.15.11.10 isGroupHomomorphism  test whether A defines a group homomrphism from L1 to L2
D.15.11.11 isGradedRingHomomorphism  test graded ring homomorph
D.15.11.12 createGradedRingHomomorphism  create a graded ring homomorph
D.15.11.13 setModuleGrading  attach multiweights of units to a module and return it
D.15.11.14 getModuleGrading  get multiweights of module units (attached to M)
D.15.11.15 isSublattice  test whether A is a sublattice of B
D.15.11.16 imageLattice  computes an integral basis for P(L)
D.15.11.17 intRank  computes the rank of the intmat A
D.15.11.18 kernelLattice  computes an integral basis for the kernel of the linear map P.
D.15.11.19 latticeBasis  computes an integral basis of the lattice B
D.15.11.20 preimageLattice  computes an integral basis for the preimage of the lattice L under the linear map P.
D.15.11.21 projectLattice  computes a linear map of lattices having the primitive span of B as its kernel.
D.15.11.22 intersectLattices  computes an integral basis for the intersection of the lattices A and B.
D.15.11.23 isIntegralSurjective  test whether the map P of lattices is surjective.
D.15.11.24 isPrimitiveSublattice  test whether A generates a primitive sublattice.
D.15.11.25 intInverse  computes the integral inverse matrix of the intmat A
D.15.11.26 integralSection  for a given linear surjective map P of lattices this procedure returns an integral section of P.
D.15.11.27 primitiveSpan  computes a basis for the minimal primitive sublattice that contains the given vectors (by A).
D.15.11.28 factorgroup  create the group G mod H
D.15.11.29 productgroup  create the group G x H
D.15.11.30 multiDeg  compute the multidegree of A
D.15.11.31 multiDegBasis  compute all monomials of multidegree d
D.15.11.32 multiDegPartition  compute the multigraded-homogeneous components of p
D.15.11.33 isTorsionFree  test whether the current multigrading is free
D.15.11.34 isPositive  test whether the current multigrading is positive
D.15.11.35 isZeroElement  test whether p has zero multidegree
D.15.11.36 areZeroElements  test whether an integer matrix M considered as a collection of columns has zero multidegree
D.15.11.37 isHomogeneous  test whether 'a' is multigraded-homogeneous
D.15.11.38 equalMultiDeg  test whether e1==e2 in the current multigrading
D.15.11.39 multiDegGroebner  compute the multigraded GB/SB of M
D.15.11.40 multiDegSyzygy  compute the multigraded syzygies of M
D.15.11.41 multiDegModulo  compute the multigraded 'modulo' module of I and J
D.15.11.42 multiDegResolution  compute the multigraded resolution of M
D.15.11.43 multiDegTensor  compute the tensor product of multigraded modules m,n
D.15.11.44 multiDegTor  compute the Tor_i(m,n) for multigraded modules m,n
D.15.11.45 defineHomogeneous  get a grading group wrt which p becomes homogeneous
D.15.11.46 pushForward  find the finest grading on the image ring, homogenizing f
D.15.11.47 gradiator  coarsens grading of the ring until h becomes homogeneous
D.15.11.48 hermiteNormalForm  compute the Hermite Normal Form of a matrix
D.15.11.49 smithNormalForm  compute matrices D,P,Q with D=P*A*Q and D is the smith normal form of A
D.15.11.50 hilbertSeries  compute the multigraded Hilbert Series of M
D.15.11.51 lll  applies LLL(.) of lll.lib which only works for lists on a matrix A